188 research outputs found

    Monitoring metrics over time: Why clinical trialists need to systematically collect site performance metrics

    Get PDF
    Background: Over the last decade, there has been an increasing interest in risk-based monitoring (RBM) in clinical trials, resulting in a number of guidelines from regulators and its inclusion in ICH GCP. However, there is a lack of detail on how to approach RBM from a practical perspective, and insufficient understanding of best practice. Purpose: We present a method for clinical trials units to track their metrics within clinical trials using descriptive statistics and visualisations. Research Design: We suggest descriptive statistics and visualisations within a SWAT methodology. Study Sample: We illustrate this method using the metrics from TEMPER, a monitoring study carried out in three trials at the MRC Clinical Trials Unit at UCL. Data Collection: The data collection for TEMPER is described in DOI: 10.1177/1740774518793379. Results: We show the results and discuss a protocol for a Study-Within-A-Trial (SWAT 167) for those wishing to use the method. Conclusions: The potential benefits metric tracking brings to clinical trials include enhanced assessment of sites for potential corrective action, improved evaluation and contextualisation of the influence of metrics and their thresholds, and the establishment of best practice in RBM. The standardisation of the collection of such monitoring data would benefit both individual trials and the clinical trials community

    Uptake of the multi-arm multi-stage (MAMS) adaptive platform approach: a trial-registry review of late-phase randomised clinical trials

    Get PDF
    BACKGROUND: For medical conditions with numerous interventions worthy of investigation, there are many advantages of a multi-arm multi-stage (MAMS) platform trial approach. However, there is currently limited knowledge on uptake of the MAMS design, especially in the late-phase setting. We sought to examine uptake and characteristics of late-phase MAMS platform trials, to enable better planning for teams considering future use of this approach. DESIGN: We examined uptake of registered, late-phase MAMS platforms in the EU clinical trials register, Australian New Zealand Clinical Trials Registry, International Standard Randomised Controlled Trial Number registry, Pan African Clinical Trials Registry, WHO International Clinical Trial Registry Platform and databases: PubMed, Medline, Cochrane Library, Global Health Library and EMBASE. Searching was performed and review data frozen on 1 April 2021. MAMS platforms were defined as requiring two or more comparison arms, with two or more trial stages, with an interim analysis allowing for stopping of recruitment to arms and typically the ability to add new intervention arms. RESULTS: 62 late-phase clinical trials using an MAMS approach were included. Overall, the number of late-phase trials using the MAMS design has been increasing since 2001 and been accelerated by COVID-19. The majority of current MAMS platforms were either targeting infectious diseases (52%) or cancers (29%) and all identified trials were for treatment interventions. 89% (55/62) of MAMS platforms were evaluating medications, with 45% (28/62) of the MAMS platforms having at least one or more repurposed medication as a comparison arm. CONCLUSIONS: Historically, late-phase trials have adhered to long-established standard (two-arm) designs. However, the number of late-phase MAMS platform trials is increasing, across a range of different disease areas. This study highlights the potential scope of MAMS platform trials and may assist research teams considering use of this approach in the late-phase randomised clinical trial setting. PROSPERO REGISTRATION NUMBER: CRD42019153910

    Lack of transparent reporting of trial monitoring approaches in randomised controlled trials: A systematic review of contemporary protocol papers

    Get PDF
    Background: Monitoring is essential to ensure patient safety and data integrity in clinical trials as per Good Clinical Practice. The Standard Protocol Items: Recommendations for Interventional Trials Statement and its checklist guides authors to include monitoring in their protocols. We investigated how well monitoring was reported in published ā€˜protocol papersā€™ for contemporary randomised controlled trials. Methods: A systematic search was conducted in PubMed to identify eligible protocol papers published in selected journals between 1 January 2020 and 31 May 2020. Protocol papers were classified by whether they reported monitoring and, if so, by the details of monitoring. Data were summarised descriptively. Results: Of 811 protocol papers for randomised controlled trials, 386 (48%; 95% CI: 44%ā€“51%) explicitly reported some monitoring information. Of these, 20% (77/386) reported monitoring information consistent with an on-site monitoring approach, and 39% (152/386) with central monitoring, 26% (101/386) with a mixed approach, while 14% (54/386) did not provide sufficient information to specify an approach. Only 8% (30/386) of randomised controlled trials reported complete details about all of scope, frequency and organisation of monitoring; frequency of monitoring was the least reported. However, 6% (25/386) of papers used the term ā€˜auditā€™ to describe ā€˜monitoringā€™. Discussion: Monitoring information was reported in only approximately half of the protocol papers. Suboptimal reporting of monitoring hinders the clinical community from having the full information on which to judge the validity of a trial and jeopardises the value of protocol papers and the credibility of the trial itself. Greater efforts are needed to promote the transparent reporting of monitoring to journal editors and authors

    Use of NHS Digital datasets as trial data in the UK: a position paper

    Get PDF
    Background: Clinical trial teams increasingly want to make use of data from healthcare systems (ā€œhealthcare dataā€), particularly to enhance recruitment and follow-up of participants, to reduce time and cost, and to stop the duplication of effort. However, there is continued uncertainty of how regulators regard healthcare data used for trial purposes, in terms of provenance, quality and reliability. Objectives: There were two key objectives: First, to demonstrate the data integrity of two datasets held by NHS Digital (NHSD) that are most requested by trial teams; and second, to set out an approach by which any other healthcare systems datasets can be similarly evaluated. Method: The data lifecycles of the datasets were carefully documented, mapping the flow of data from the originating healthcare providerā€™s databases to NHSD warehouses and onwards to clinical trials teams. These were assessed for evidence of whether the datasets are accurate, reliable, complete, contemporaneous, and well-governed. Result: The assessment method was applied to (a) the Hospital Episode Statistics Admitted Patient Care (HES APC) dataset and (b) the Civil Registration of Deaths (CRD) dataset. This paper clearly demonstrates that their collection and management through NHSD systems ensure their integrity and reliability. The datasets are accurate representations of the data held by the originating providers (acute NHS trusts and local registrars). Conclusion: Based on these findings, the HES APC and CRD datasets satisfy the assessment criteria that demonstrate they are reliable transcribed copies of the original source data. Implications: First, these datasets can be used directly for clinical trial data, with trial teams focusing on the accuracy of algorithms and processes to identify particular outcomes rather than on the integrity of the data flow. Second, this assessment approach should be used to assess whether other healthcare systems datasets are ready to be used as transcribed copies of source data, and for data providers to take appropriate steps to redress this matter if they are not

    Embracing model-based designs for dose-finding trials

    Get PDF
    Background: Dose-finding trials are essential to drug development as they establish recommended doses for later-phase testing. We aim to motivate wider use of model-based designs for dose finding, such as the continual reassessment method (CRM). Methods: We carried out a literature review of dose-finding designs and conducted a survey to identify perceived barriers to their implementation. Results: We describe the benefits of model-based designs (flexibility, superior operating characteristics, extended scope), their current uptake, and existing resources. The most prominent barriers to implementation of a model-based design were lack of suitable training, chief investigatorsā€™ preference for algorithm-based designs (e.g., 3 Ć¾ 3), and limited resources for study design before funding. We use a real-world example to illustrate how these barriers can be overcome. Conclusions: There is overwhelming evidence for the benefits of CRM. Many leading pharmaceutical companies routinely implement model-based designs. Our analysis identified barriers for academic statisticians and clinical academics in mirroring the progress industry has made in trial design. Unified support from funders, regulators, and journal editors could result in more accurate doses for later-phase testing, and increase the efficiency and success of clinical drug development. We give recommendations for increasing the uptake of model-based designs for dose-finding trials in academia

    Access to routinely collected health data for clinical trials - review of successful data requests to UK registries.

    Get PDF
    BACKGROUND: Clinical trials generally each collect their own data despite routinely collected health data (RCHD) increasing in quality and breadth. Our aim is to quantify UK-based randomised controlled trials (RCTs) accessing RCHD for participant data, characterise how these data are used and thereby recommend how more trials could use RCHD. METHODS: We conducted a systematic review of RCTs accessing RCHD from at least one registry in the UK between 2013 and 2018 for the purposes of informing or supplementing participant data. A list of all registries holding RCHD in the UK was compiled. In cases where registries published release registers, these were searched for RCTs accessing RCHD. Where no release register was available, registries were contacted to request a list of RCTs. For each identified RCT, information was collected from all publicly available sources (release registers, websites, protocol etc.). The search and data extraction were undertaken between January and May 2019. RESULTS: We identified 160 RCTs accessing RCHD between 2013 and 2018 from a total of 22 registries; this corresponds to only a very small proportion of all UK RCTs (about 3%). RCTs accessing RCHD were generally large (median sample size 1590), commonly evaluating treatments for cancer or cardiovascular disease. Most of the included RCTs accessed RCHD from NHS Digital (68%), and the most frequently accessed datasets were mortality (76%) and hospital visits (55%). RCHD was used to inform the primary trial (82%) and long-term follow-up (57%). There was substantial variation in how RCTs used RCHD to inform participant outcome measures. A limitation was the lack of information and transparency from registries and RCTs with respect to which datasets have been accessed and for what purposes. CONCLUSIONS: In the last five years, only a small minority of UK-based RCTs have accessed RCHD to inform participant data. We ask for improved accessibility, confirmed data quality and joined-up thinking between the registries and the regulatory authorities. TRIAL REGISTRATION: PROSPERO CRD42019123088

    Monitoring advances including consent: learning from COVID-19 trials and other trials running in UKCRC registered clinical trials units during the pandemic.

    Get PDF
    The COVID-19 pandemic has affected how clinical trials are managed, both within existing portfolios and for the rapidly developed COVID-19 trials. Sponsors or delegated organisations responsible for monitoring trials have needed to consider and implement alternative ways of working due to the national infection risk necessitating restricted movement of staff and public, reduced clinical staff resource as research staff moved to clinical areas, and amended working arrangements for sponsor and sponsor delegates as staff moved to working from home.Organisations have often worked in isolation to fast track mitigations required for the conduct of clinical trials during the pandemic; this paper describes many of the learnings from a group of monitoring leads based in United Kingdom Clinical Research Collaboration (UKCRC) Clinical Trials Unit (CTUs) within the UK.The UKCRC Monitoring Task and Finish Group, comprising monitoring leads from 9 CTUs, met repeatedly to identify how COVID-19 had affected clinical trial monitoring. Informed consent is included as a specific issue within this paper, as review of completed consent documentation is often required within trial monitoring plans (TMPs). Monitoring is defined as involving on-site monitoring, central monitoring or/and remote monitoring.Monitoring, required to protect the safety of the patients and the integrity of the trial and ensure the protocol is followed, is often best done by a combination of central, remote and on-site monitoring. However, if on-site monitoring is not possible, workable solutions can be found using only central or central and remote monitoring. eConsent, consent by a third person, or via remote means is plausible. Minimising datasets to the critical data reduces workload for sites and CTU staff. Home working caused by COVID-19 has made electronic trial master files (TMFs) more inviting. Allowing sites to book and attend protocol training at a time convenient to them has been successful and worth pursuing for trials with many sites in the future.The arrival of COVID-19 in the UK has forced consideration of and changes to how clinical trials are conducted in relation to monitoring. Some developed practices will be useful in other pandemics and others should be incorporated into regular use
    • ā€¦
    corecore