190 research outputs found

    Superconducting circuit boundary conditions beyond the Dynamical Casimir Effect

    Get PDF
    We study analytically the time-dependent boundary conditions of superconducting microwave circuit experiments in the high plasma frequency limit, in which the conditions are Robin-type and relate the value of the field to the spatial derivative of the field. We give an explicit solution to the field evolution for boundary condition modulations that are small in magnitude but may have arbitrary time dependence, in a formalism that applies both to a semiopen waveguide and to a closed waveguide with two independently adjustable boundaries. The correspondence between the microwave Robin boundary conditions and the mechanically-moving Dirichlet boundary conditions of the Dynamical Casimir Effect is shown to break down at high field frequencies, approximately one order of magnitude above the frequencies probed in the 2011 experiment of Wilson et al. Our results bound the parameter regime in which a microwave circuit can be used to model relativistic effects in a mechanically-moving cavity, and they show that beyond this parameter regime moving mirrors produce more particles and generate more entanglement than their non-moving microwave waveguide simulations.Comment: 29 pages, 2 figures. v3: minor updates, including a change in the title. Published versio

    Hamiltonian evolution and quantization for extremal black holes

    Get PDF
    We present and contrast two distinct ways of including extremal black holes in a Lorentzian Hamiltonian quantization of spherically symmetric Einstein-Maxwell theory. First, we formulate the classical Hamiltonian dynamics with boundary conditions appropriate for extremal black holes only. The Hamiltonian contains no surface term at the internal infinity, for reasons related to the vanishing of the extremal hole surface gravity, and quantization yields a vanishing black hole entropy. Second, we give a Hamiltonian quantization that incorporates extremal black holes as a limiting case of nonextremal ones, and examine the classical limit in terms of wave packets. The spreading of the packets, even the ones centered about extremal black holes, is consistent with continuity of the entropy in the extremal limit, and thus with the Bekenstein-Hawking entropy even for the extremal holes. The discussion takes place throughout within Lorentz-signature spacetimes.Comment: 16 pages, LaTeX using REVTeX v3.1. (v2: Reference added.
    corecore