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Abstract

We study analytically the time-dependent boundary conditions of supercon-
ducting microwave circuit experiments in the high plasma frequency limit, in which
the conditions are Robin-type and relate the value of the field to the spatial deriva-
tive of the field. We give an explicit solution to the field evolution for boundary
condition modulations that are small in magnitude but may have arbitrary time
dependence, in a formalism that applies both to a semiopen waveguide and to a
closed waveguide with two independently adjustable boundaries. The correspon-
dence between the microwave Robin boundary conditions and the mechanically-
moving Dirichlet boundary conditions of the Dynamical Casimir Effect is shown
to break down at high field frequencies, approximately one order of magnitude
above the frequencies probed in the 2011 experiment of Wilson et al. Our results
bound the parameter regime in which a microwave circuit can be used to model
relativistic effects in a mechanically-moving cavity, and they show that beyond
this parameter regime moving mirrors produce more particles and generate more
entanglement than their non-moving microwave waveguide simulations.

1 Introduction

The quantum theory of relativistic fields with moving boundaries was first explored by
Moore in a remarkably original paper on the quantum formulation of linearly polarized
light in a one-dimensional moving cavity [1]. The primary result of this investigation
was the discovery that moving mirrors in vacuum create photons. Later, motivated by
developments in quantum field theory in curved spacetimes, the specialization to a single
moving mirror in Minkowski spacetime was carried out by Fulling and Davies [2], who
again found that non-uniformly accelerating mirrors generate radiation. These effects,
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in which particles are produced by moving boundaries, are generally referred to as the
Dynamical Casimir Effect (DCE) or the Nonstationary Casimir Effect [3, 4, 5].

An experimental verification of the DCE in a system with a mechanically mov-
ing boundary has remained elusive because of the technological challenges in creating
sufficiently large accelerations [3, 4, 5]. However, an experimental observation of a
similar particle creation effect has been reported in a mechanically static semiconduc-
tor waveguide where the boundary condition on the field is modulated electrically, by
a superconducting quantum-interference device (SQUID) [6]. A related experimental
observation of particle creation in Josephson metamaterial has been reported in [7].
These observations open fascinating prospects for simulating on a mechanically static
desktop device quantum phenomena due to motion, including entanglement generation
and degradation, in a regime where the moving system would experience significant
relativistic effects [8, 9, 10].

In this paper we address the evolution of a quantum field in waveguides of the type
used in the experiment of [6] in situations where the modulation of the SQUID(s) at the
end(s) of the waveguide is small in magnitude but may have arbitrary time-dependence,
under the further assumption that the plasma frequency of the SQUID(s) is negligibly
high compared with the frequencies where the experiment operates. More precisely,
recall that the field Φ(t, x) in the experiment of [6] satisfies, under the approximations
described in [11, 12], the (1 + 1)-dimensional Klein-Gordon equation

0 =

(
∂2

∂t2
− v2 ∂

2

∂x2

)
Φ(t, x) (1.1)

with the boundary condition

0 = CJ φ̈(t, 0) +

(
2π

Φ0

)2

EJ(t)Φ(t, 0) +
1

L0

Φ′(t, 0) , (1.2)

where the cavity is at x ≤ 0, the SQUID is at x = 0, the meaning of the positive
constants v, Φ0, CJ and L0 is as described in [12], and EJ(t) can be given arbitrary
time-dependence by modulating the magnetic field applied to the SQUID. In the regime
where the SQUID’s plasma frequency is large compared to the frequency of Φ, the time
derivative term in (1.2) is negligible, and (1.2) reduces to

0 = Φ(t, 0) + Leff
0 (t)Φ′(t, 0) , (1.3)

where Leff
0 (t) =

[
Φ0/(2π)

]2[
L0EJ(t)

]−1
. We shall consider the regime in which the

boundary condition (1.3) applies and the time-dependence of Leff
0 (t) is arbitrary in profile

but small in magnitude. The regime where the SQUID’s plasma frequency is large but
not negligibly so is considered in [13, 14, 15].

Our interest in the boundary condition (1.3) is twofold. First, considering the con-
dition in its own right, we give an explicit solution to the quantum dynamics to leading
perturbative order in the time variation of the boundary condition, using a formalism
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that allows us to handle both the semiopen waveguide and a closed waveguide, and al-
lowing for the closed waveguide the modulations at the two ends to remain independent
of each other. The mathematical observation underlying our formalism is that (1.3) is a
linear relation between the value of the field and the spatial derivative of the field, known
as a Robin boundary condition, and when this condition is independent of time, it has a
well-known role in making the spatial part of the wave operator in (1.1) self-adjoint and
hence ensuring the unitarity of the time evolution [16, 17, 18]. A time-dependent bound-
ary condition can then be treated perturbatively by combining the spectral methods of
[16, 17, 18] to the techniques developed in [19, 20] for mechanically moving cavities.
For the semiopen waveguide our results agree with those found in [21, 22, 23, 24] via a
different formalism.

Second, we wish to address the sense in which (1.3) models a mechanically moving
boundary of the DCE. For a Dirichlet mirror at the time-dependent location x =
xDCE(t), the boundary condition on the field reads

0 = Φ
(
t, xDCE(t)

)
. (1.4)

If we choose in (1.3) Leff
0 (t) = xDCE(t), (1.3) reduces to (1.4) for field frequencies much

smaller than v/|Leff
0 |, but for higher field frequencies the correspondence no longer holds.

We shall see that our perturbative solution of the field evolution with the condition
(1.3) indeed differs from the similar perturbative solution with the condition (1.4) for
frequencies that are not much smaller than v/|Leff

0 |, both for a semiopen waveguide and
a closed waveguide; in particular, the large frequency falloff properties of the solution
are qualitatively different. Simulations of relativistic motion with the mechanically
static semiconductor waveguide would hence need to take place in the low frequency
regime where the successive approximations from (1.2) via (1.3) to (1.4) hold. Both the
experiment of [6] and the proposals of [8, 9, 10] appear to operate within in this domain
by a margin of approximately one order of magnitude.

The plan of the paper is as follows:
Section 2 considers evolution under a small discontinuous change in the boundary

condition (1.3) for a semiopen waveguide, and Section 3 presents the similar analysis
for the closed waveguide. Evolution under small changes in the boundary condition
with arbitrary time-dependence for both types of waveguides is written out in Section 4.
Section 5 compares the evolution to that under Dirichlet boundary conditions at one
or two mechanically moving boundaries. Section 6 presents a summary and concluding
remarks.

Appendix A collects technical identities in a perturbative expansion of Bogoliubov
coefficients. Appendix B treats the evolution under the Dirichlet boundary condition at
one mechanically moving boundary in a small acceleration expansion in which velocities
and travel distances are unrestricted, adapting to one moving boundary the treatment
of mechanically rigid cavities given in [19, 20]. In appendix C we derive the first order
formula for the negativity measure of entanglement in the case when the modes have a
continuous spectrum.
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2 Semiopen waveguide

In this section we discuss a semiopen waveguide under a sudden change in the Robin
boundary condition (1.3). Subsection 2.1 establishes the notation and reviews the known
properties of a time-independent Robin boundary condition. The sudden change is
implemented in subsection 2.2, and small sudden changes about the Robin boundary
condition relevant for the experiment of [6] and about the Dirichlet boundary condition
are discussed respectively in subsections 2.3 and 2.4.

2.1 Static boundary condition

We adopt units in which the phase velocity v in (1.1) is set to unity. We may hence
think of the field as a real scalar field φ on a (1 + 1)-dimensional Minkowski spacetime,
with the global Minkowski coordinates (t, x) and the metric ds2 = −dt2 + dx2. We take
the boundary to be at x = 0 and the field to live in the half 0 ≤ x <∞.

We consider the massive Klein-Gordon field equation

(∂2
t − ∂2

x + µ2)φ = 0 , (2.1)

where µ ≥ 0 is the mass. The massless special case µ = 0 reduces to (1.1). We keep
here µ general, in part because setting µ = 0 does not significantly simplify the analysis,
but also in part in view of prospective future comparisons with mechanically moving
cavities in situations where transverse dimensions may generate a positive µ by Fourier
decomposition [19, 20, 25].

We introduce at x = 0 the Robin family of boundary conditions

0 = φ(t, 0) +Dφ′(t, 0) , (2.2)

where D ∈ R ∪ {∞} is a constant independent of t. The special case D = 0 gives the
Dirichlet boundary condition, φ(t, 0) = 0, the special case D = ∞ gives the Neumann
boundary condition, φ′(t, 0) = 0, and all other values of D mix φ(t, 0) and φ′(t, 0).

Any choice for D makes −∂2
x self-adjoint [16, 17, 18] and would hence yield a consis-

tent quantum theory of a non-relativistic particle on the half-line, although the choice
D = 0 may in that context be considered less fine-tuned than the others [26]. In
the present context of a relativistic quantum field theory, we consider only the values
of D that make the spectrum of −∂2

x + µ2 strictly positive. For µ = 0 this means
D ∈ (−∞, 0]∪{∞}, and for µ > 0 it means D ∈ (−∞, 0]∪{∞}∪ (µ−1,∞). A negative
eigenvalue of −∂2

x + µ2 would give a tachyonic instability, and the zero eigenvalue that
occurs when µ > 0 and D = µ−1 would give a zero mode and hence a theory without a
Fock vacuum.

The field is quantised in the usual fashion. A continuum of mode solutions that are
positive frequency with respect to ∂t are

φk(t, x) =
1√
πω

e−iωt sin(kx+ δ) , (2.3)
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where k > 0, ω =
√
k2 + µ2, δ is determined as a function of k from

tan δ = −kD , (2.4)

and we may fix the phase by choosing |δ| < π/2 for D ∈ R and δ = π/2 for D = ∞.
When µ > 0 and µ−1 < D <∞, there is in addition a discrete ground state mode, given
by

φg(t, x) :=
1(

µ2D2 − 1
)1/4

e−i
√
µ2−D−2 t e−x/D . (2.5)

Writing the Klein-Gordon inner product in the conventions of [27] as

(φ, χ) = −i
∫ ∞

0

(
φ (∂tχ)− (∂tφ)χ

)
dx , (2.6)

where the overline denotes complex conjugation, the continuum modes φk are Dirac-
orthonormal,

(φk, φk′) = δ(k − k′) , (2.7)

and when the discrete ground state φg (2.5) exists, it is normalised and orthogonal to
the continuum modes. The Fock space is built on the vacuum that is annihilated by the
annihilation operators associated with the continuum modes φk and with the discrete
mode φg when the latter exists.

2.2 Sudden change in the boundary condition

Suppose that for t < 0 we use the field modes as introduced above and for t > 0 we use
a similar set of field modes with D replaced by D′. Denoting the new continuum modes
by φ̃k′ and the new discrete mode by φ̃g′ , we may match the two sets of modes at t = 0
in the notation of [27] as

φ̃k′ =

∫ ∞
0

(
oαk′kφk + oβk′kφk

)
dk + oαk′gφg + oβk′gφg , (2.8a)

φ̃g′ =

∫ ∞
0

(
oαg′kφk + oβg′kφk

)
dk + oαg′gφg + oβg′gφg , (2.8b)

where we have included the lower left subscript o in the Bogoliubov coefficients oα and

oβ to indicate that the change in the boundary condition is sudden.
Expressions for the Bogoliubov coefficients can be found by taking inner products of

(2.8) with the untilded modes and their complex conjugates [27]. For the continuum-
to-continuum Bogoliubov coefficients, we find

oαk′k = cos(δ − δ′)δ(k − k′) +
sin δ sin δ′

π
√
ωω′

(
1

D′
− 1

D

)
P

(
1

ω − ω′

)
, (2.9a)

oβk′k =
sin δ sin δ′

π
√
ωω′ (ω + ω′)

(
1

D′
− 1

D

)
, (2.9b)
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where δ and δ′ are determined by

tan δ = −kD , (2.10a)

tan δ′ = −k′D′ , (2.10b)

and P in (2.9a) denotes the principal value in the integration over k at k = k′. In
the special cases D = 0 and D′ = 0 the formulas (2.9) are understood in their well-
defined limiting sense. The continuum-to-discrete and discrete-to-continuum Bogoliubov
coefficients will not be needed below and we omit the formulas.

We note that while oβk′k (2.9b) is a function for all k and k′, oαk′k (2.9a) has distri-
butional support at k = k′ because of the Dirac delta in the first term and the principal
value integral in the second term.

2.3 Small sudden change: far from Dirichlet

We now consider the case where D and D′ are negative and close to each other. This
is the situation relevant for the the waveguide experiment of [6]. (Recall that in our
conventions the field φ lives at x ≥ 0, while the field Φ in (1.1)–(1.3) lives at x ≤ 0.)

We write

D = −Λ , (2.11a)

D′ = −Λ(1 + η) , (2.11b)

where Λ is a positive constant of dimension length and η is small. The mode expansion
contains no discrete mode for any value of µ.

Expanding the Bogoliubov coefficients (2.9) in η, we find

oαk′k =

{
1− η2(kΛ)2

2
[
1 + (kΛ)2]2

}
δ(k − k′)

+
ηΛkk′

π
√
ωω′

√
1 + (kΛ)2

√
1 + (k′Λ)2

[
1− η(k′Λ)2

1 + (k′Λ)2

]
P

(
1

ω − ω′

)
+O

(
η3
)
,

(2.12a)

oβk′k =
ηΛkk′

π
√
ωω′ (ω + ω′)

√
1 + (kΛ)2

√
1 + (k′Λ)2

[
1− η(k′Λ)2

1 + (k′Λ)2

]
+O

(
η3
)
. (2.12b)

As a consistency check, we have verified that the expansion (2.12) is consistent with the
identities satisfied by the Bogoliubov coefficients, collected in Appendix A, in the sense
that the linear order identities (A.4a) hold and the off-diagonal part of the quadratic
order identities (A.4b) holds. We are not aware of reasons to suspect inconsistencies in
the diagonal part of (A.4b) but we have not undertaken the distributional analysis to
examine this.
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2.4 Small sudden change: near Dirichlet

As a second regime of interest, we perturb around the Dirichlet boundary condition.
This case is not directly relevant for the experiment of [6], but we shall see in Section 5
that it exhibits close theoretical similarity with a mechanically moving boundary.

We set D = 0 and assume D′ to be close to 0. If D′ is negative, the result may be
obtained from (2.12) by writing ηΛ = −b and letting Λ→ 0 while b remains finite and
negative but small: then D′ = b < 0, and the Bogoliubov coefficients are given by

oαk′k =
[
1− 1

2
(kb)2] δ(k − k′)− bkk′

π
√
ωω′

P

(
1

ω − ω′

)
+O

(
b3
)
, (2.13a)

oβk′k = − bkk′

π
√
ωω′ (ω + ω′)

+O
(
b3
)
. (2.13b)

If D′ is positive, the t > 0 theory has a tachyonic instability (for all positive D′ if µ = 0
and for 0 < D′ < µ−1 if µ > 0) because of the negative eigenvalue of −∂2

x +µ2; however,
the tachyon is nonperturbative in D′, and we have verified that just ignoring the tachyon
and proceeding directly from (2.9) leads again to (2.13), where now D′ = b > 0.

As a consistency check, we have verified that (2.13) satisfies the linear order Bo-
goliubov identities (A.4a) and the off-diagonal part of the quadratic order Bogoliubov
identities (A.4b), regardless the sign of b.

3 Closed waveguide

In this section we adapt the analysis of Section 2 to a cavity waveguide that is closed
at both ends. For simplicity, we treat only the massless field, µ = 0.

3.1 Static boundary condition

We follow the notation of Section 2, setting µ = 0. We place the cavity at 0 ≤ x ≤ L,
where the positive constant L is the length of the cavity.

We write the static Robin boundary conditions at the ends of the cavity as

0 = φ(t, 0) +D1φ
′(t, 0) , (3.1a)

0 = φ(t, L) +D2φ
′(t, L) , (3.1b)

where D1 and D2 are constants independent of t, taking values in R ∪ {∞}.
Any choice for D1 and D2 makes −∂2

x self-adjoint [16, 17, 18]. To avoid instabilities
and zero modes, we assume initially D1 and D2 to be such that the spectrum of −∂2

x is
strictly positive. We shall however see in subsection 3.3 that a perturbative treatment
in D1 and D2 remains consistent even in the presence of a nonperturbative tachyon, on
a par with what happened for the semiopen waveguide in subsection 2.4.
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The field is again quantised in the usual fashion. The Klein-Gordon inner product
is as in (2.6) but integrated over x ∈ [0, L]. The equation for the eigenvalues can be
written down using (3.1).

3.2 Small sudden change: far from Dirichlet

We consider the case where D1 < 0 and D2 > 0, and there is a sudden but small change
in their values. This models a waveguide whose each end terminates at a SQUID as in
the experiment of [6].

For t < 0, we set D1 = −κ1L and D2 = κ2L, where κ1 and κ2 are positive dimen-
sionless constants. With this boundary condition −∂2

x is positive definite. The mode
functions are

φq(t, x) =

√
(1 + κ2

1q
2)(1 + κ2

2q
2)

qF (q)
e−iqt/L sin(qx/L+ δq), (3.2)

where

F (q) := (1 + κ1 + κ2
1q

2)(1 + κ2 + κ2
2q

2)− κ1κ2 , (3.3)

q goes over the positive solutions to

cot q =
κ1κ2q

2 − 1

(κ1 + κ2)q
, (3.4)

tan δq = κ1q, and we choose the phase so that 0 < δq < π/2. There is exactly one q in
each interval mπ < q < (m + 1)π, m = 0, 1, 2, . . .. The mode functions are normalised
to (φq, φ

′
q) = δqq′ .

For t > 0, we set D1 = (−κ1 + η1)L and D2 = (κ2 + η2)L, where η1 and η2 are
dimensionless constants, assumed to be small. We work perturbatively in η1 and η2,
setting both of them to be proportional to a formal expansion parameter η which at the
end is set to unity. The mode functions are proportional to e−ikt sin(kx + δ) where k
and δ are determined from (3.1). We label the mode functions by the positive solutions
to

cot p =
κ1κ2p

2 − 1

(κ1 + κ2)p
, (3.5)

such that k = p/L+O(η), we denote them by φ̃p, and we choose their phase to agree with
that of (3.2) in the zeroth perturbative order. We then find that the eigenfrequencies
are given by

kp =

(
1 +

η1(1 + κ2
2p

2)− η2(1 + κ2
1p

2)

F (p)

)
p

L
+O

(
η2
)
. (3.6)
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The Bogoliubov coefficients are now defined by matching the modes at t = 0 as

φ̃p =
∑
q

(
oαpqφq + oβpqφq

)
. (3.7)

Proceeding as in [19, 25], we find

oαpp = 1 +O
(
η2
)
, (3.8a)

oαpq =

[
η1

√
(1 + κ2

2p
2)(1 + κ2

2q
2)− (−1)ϕp+ϕqη2

√
(1 + κ2

1p
2)(1 + κ2

1q
2)
]√

pq

(p− q)
√
F (p)F (q)

+O
(
η2
)

for p 6= q , (3.8b)

oβpq = −

[
η1

√
(1 + κ2

2p
2)(1 + κ2

2q
2)− (−1)ϕp+ϕqη2

√
(1 + κ2

1p
2)(1 + κ2

1q
2)
]√

pq

(p+ q)
√
F (p)F (q)

+O
(
η2
)
, (3.8c)

where the map q 7→ ϕq labels the consecutive solutions to (3.4) by consecutive integers.
The expressions for the order η2 terms in (3.6) and (3.8) are lengthy and we suppress
them here.

As a consistency check, the linear terms in (3.8) satisfy the linear order Bogoliubov
identities (A.4a). We are not aware of reasons to suspect inconsistencies in the quadratic
order identities (A.4b) but examining these would require a nontrivial evaluation of the
left-hand side in (A.4b) and we have not carried out this evaluation.

3.3 Small sudden change: near Dirichlet

We consider also a perturbation around the Dirichlet boundary condition. If η1 < 0 and
η2 > 0, the result may be obtained from (3.8) simply by taking the limit κ1 → 0 and
κ2 → 0. The t < 0 mode functions are given by

φn(t, x) =
1√
πn

e−inπt/L sin(nπx/L) , (3.9)

where n = 1, 2, . . .. Using positive integers to label both the t < 0 mode functions and
the t > 0 mode functions, we find that the t > 0 eigenfrequencies are given by

km =
(
1 + (η1 − η2) + (η1 − η2)2) πm

L
+O

(
η3
)
, (3.10)
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where m = 1, 2, . . ., and the Bogoliubov coefficients are given by

oαmm = 1− 1
6

(
η2

1 + η1η2 + η2
2

)
m2π2 +O

(
η3
)
, (3.11a)

oαmn =

(
η1 − (−1)m+nη2

)√
mn

(m− n)

−
(
η1 − (−1)m+nη2

)
(η1 − η2)n

√
mn

(m− n)2 +O
(
η3
)

for m 6= n , (3.11b)

oβmn = −
(
η1 − (−1)m+nη2

)√
mn

(m+ n)

−
(
η1 − (−1)m+nη2

)
(η1 − η2)n

√
mn

(m+ n)2 +O
(
η3
)
, (3.11c)

where we have now displayed also the order η2 terms. If η1 ≥ 0 and/or η2 ≤ 0, the
t > 0 theory may have tachyonic instabilities or zero modes; however, both of these are
nonperturbative, and we have verified that setting D1 = D2 = 0 for t < 0, D1 = η1L
and D2 = η2L for t > 0, ignoring any tachyons or zero modes, and working directly
from (3.1) and (3.7), yields (3.10) and (3.11) regardless the signs of η1 and η2.

As a consistency check, the expressions in (3.11) can be verified to satisfy the pertur-
bative Bogoliubov identities (A.4). The elements of the matrix square on the left-hand
side of (A.4a) are given by absolutely convergent sums that can be evaluated by residue
techniques.

4 Boundary condition with arbitrary

time-dependence

When the boundary condition has arbitrary time dependence but the variations remain
so small in magnitude that first-order perturbation theory suffices, the evolution of the
field can be obtained by composing the sudden changes of Sections 2 and 3 and passing
to the limit [20]. We discuss first the semiopen waveguide and then the closed waveguide.

4.1 Semiopen waveguide

For the semiopen waveguide of Section 2, we consider a boundary condition of the form
(2.2) where D may change in time but only within the interval t0 ≤ t ≤ tf .

4.1.1 Far from Dirichlet

Consider first the far-from Dirichlet case. We write D = −Λ
(
1 + η(t)

)
, where Λ is a

positive constant and the function η(t) is vanishing outside the interval t0 ≤ t ≤ tf and
satisfies |η(t)| � 1.
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At t < t0, we introduce early time basis modes that are as in (2.3) but with the
replacement e−iωt → e−iω(t−t0). At t > tf , we similarly introduce late time basis modes
that are as in (2.3) but with the replacement e−iωt → e−iω(t−tf ). Let αk′k and βk′k be
the coefficients in the Bogoliubov transformation from the early time modes to the late
time modes. Working perturbatively in η, we may proceed as in [20], and the outcome
can be read off from formulas (6) and (7) therein. We find

αk′k = eiω
′(tf−t0)

(
δ(k − k′) + Âk′k +O

(
η2
))

, (4.1a)

βk′k = eiω
′(tf−t0)B̂k′k +O

(
η2
)
, (4.1b)

where

Âk′k = − iΛkk′

π
√
ωω′

√
1 + (kΛ)2

√
1 + (k′Λ)2

∫ tf

t0

e−i(ω
′−ω)(t−t0) η(t) dt , (4.2a)

B̂k′k =
iΛkk′

π
√
ωω′

√
1 + (kΛ)2

√
1 + (k′Λ)2

∫ tf

t0

e−i(ω
′+ω)(t−t0) η(t) dt . (4.2b)

When µ = 0, (4.1) and (4.2) reduce to what was found in [21, 22, 23, 24] via a different
formalism.

4.1.2 Near Dirichlet

In the near-Dirichlet case, we take D = b(t), where the function b(t) is vanishing outside
the interval t0 ≤ t ≤ tf . Proceeding as above, we find

αk′k = eiω
′(tf−t0)

(
δ(k − k′) + Âk′k +O

(
b2
))

, (4.3a)

βk′k = eiω
′(tf−t0)B̂k′k +O

(
b2
)
, (4.3b)

where

Âk′k =
ikk′

π
√
ωω′

∫ tf

t0

e−i(ω
′−ω)(t−t0) b(t) dt , (4.4a)

B̂k′k = − ikk′

π
√
ωω′

∫ tf

t0

e−i(ω
′+ω)(t−t0) b(t) dt . (4.4b)

4.2 Closed waveguide

For the closed waveguide of Section 3, we consider a boundary condition of the form
(3.1) where D1 and D2 may change in time but only within the interval t0 ≤ t ≤ tf .
We may proceed as above. The only new aspect is that the method of [20] needs to
be generalised to accommodate the linear term that appears in the frequencies (3.6)
and (3.10).
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4.2.1 Far from Dirichlet

In the far-from Dirichlet case, we write D1 =
(
−κ1 + η1(t)

)
L and D2 =

(
κ2 + η2(t)

)
L,

where κ1 and κ2 are positive constants and the functions η1(t) and η2(t) are vanishing
outside the interval t0 ≤ t ≤ tf and satisfy |η1(t)| � 1 and |η2(t)| � 1. Indexing the
mode functions in the notation of subsection (3.2), writing

ωp = p/L , ωq = q/L , (4.5)

and proceeding as above, we find that the coefficients in the Bogoliubov transformation
from the early time modes to the late time modes are given by

αpq = eiωp(tf−t0)
(
δpq + Âpq +O

(
η2
))

, (4.6a)

βpq = eiωp(tf−t0)B̂pq +O
(
η2
)
, (4.6b)

where

Âpq =
i
√
pq

L
√
F (p)F (q)

[√
(1 + κ2

2p
2)(1 + κ2

2q
2)

∫ tf

t0

e−i(ωp−ωq)(t−t0) η1(t) dt

−(−1)ϕp+ϕq

√
(1 + κ2

1p
2)(1 + κ2

1q
2)

∫ tf

t0

e−i(ωp−ωq)(t−t0) η2(t) dt

]
, (4.7a)

B̂pq = −
i
√
pq

L
√
F (p)F (q)

[√
(1 + κ2

2p
2)(1 + κ2

2q
2)

∫ tf

t0

e−i(ωp+ωq)(t−t0) η1(t) dt

−(−1)ϕp+ϕq

√
(1 + κ2

1p
2)(1 + κ2

1q
2)

∫ tf

t0

e−i(ωp+ωq)(t−t0) η2(t) dt

]
. (4.7b)

4.2.2 Near Dirichlet

In the near-Dirichlet case, we write D1 = η1(t)L and D2 = η2(t)L. Indexing the past
and future mode functions by positive integers in the notation of subsection (3.3), and
writing

ωm = πm/L , ωn = πn/L , (4.8)

we find

αmn = eiωm(tf−t0)
(
δmn + Âmn +O

(
η2
))

, (4.9a)

βmn = eiωm(tf−t0)B̂mn +O
(
η2
)
, (4.9b)

where

Âmn =
iπ
√
mn

L

∫ tf

t0

e−i(ωm−ωn)(t−t0)
(
η1(t)− (−1)m+nη2(t)

)
dt , (4.10a)

B̂mn = −iπ
√
mn

L

∫ tf

t0

e−i(ωm+ωn)(t−t0)
(
η1(t)− (−1)m+nη2(t)

)
dt . (4.10b)
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5 Comparison

We are now ready to compare the evolution under the time-dependent Robin bound-
ary condition to the evolution under the Dirichlet condition at a mechanically moving
boundary.

5.1 Semiopen waveguide

For the semiopen waveguide, the evolution of a field with mass µ ≥ 0 under the time-
dependent Robin boundary condition was given in subsection 4.1. The evolution of a
massless field under a Dirichlet condition at a mechanically moving boundary is given
in Appendix B in terms of the acceleration of the boundary, in a small acceleration
approximation that allows the velocity and the travel distance to remain arbitrary and
overlaps with the DCE literature results [3, 4, 5] in the common domain of validity.

Comparing (4.3)–(4.4) and (B.11)–(B.12), we see that the massless field with the
mechanically moving boundary can be simulated to the leading order in perturbation
theory by the µ = 0 near-Dirichlet Robin boundary condition provided we choose b(t)
so that a(τ) = ∂2

τ b(τ), where a(τ) is the proper acceleration of the boundary as a
function of its proper time τ , and the modulation starts and ends so gently that both
b and ḃ vanish. This is precisely the relation one would have expected from the low
frequency equivalence between the Robin boundary condition (1.3) and the mechanically
moving Dirichlet boundary condition (1.4). The simulation is reliable in the frequency
range where the first-order perturbation theory results on both the Robin side and on
the mechanical side remain reliable; we shall not attempt to quantify this range more
precisely, but for given a(τ) and b(τ) the range is unlikely to include arbitrarily high
frequencies.

Comparing further (4.3)–(4.4) and (B.11)–(B.12) with (4.1)–(4.2), we see that the
massless field with the mechanically moving boundary can be simulated by the µ = 0
far-from-Dirichlet Robin boundary condition provided we choose η(t) so that a(τ) =
−Λ∂2

τη(τ), the frequencies are much smaller than Λ−1, and the modulation starts and
ends so gently that both η and η̇ vanish. Again, this is precisely the outcome one
would have expected from (1.3) and (1.4). When the frequencies are not much smaller
than Λ−1, the evolution with the Robin boundary condition differs from the evolution
with the mechanically moving boundary because the square root factors in (4.2) differ
from unity.

Investigating these differences further, recall that the beta coefficients are directly
related to the total photon production number by:

N =

∫
|βk′k|2 dk dk′ . (5.1)

Taking η(t) to be a sinusoidal function:

η(t) = ε sin[ωd(t− t0)] , (5.2)
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with positive constant ε � 1 and driving frequency ωd, the integrals in (4.2) can be
performed exactly. The dominant part of the photon flux occurs for frequencies below
the driving frequency. We therefore define the photon flux density, n(k), as a function
of the reduced frequency k := k′/ωd, by

n(k) := ωd

∫ ∞
0

|βωdk k
|2 dk , (5.3)

so that

N =

∫ ∞
0

n(k) dk . (5.4)

Figure 1 presents numerical plots of the photon flux density for Λ � 1/ωd and
Λ � 1/ωd. In both cases the spectrum has in the range 0 < k < 1 a distinctive
parabolic shape that is qualitatively characteristic of the DCE, and for Λ� 1/ωd there
is good agreement with the zero temperature curve of Figure 8 in [12].

For a quantitative comparison with the DCE, Figure 1 presents also the photon flux
density for the mechanically moving Dirichlet boundary, obtained from (B.11)–(B.12)
with the matching a(τ) = −Λ∂2

τη(τ). When the effective length, Λ, is much smaller than
the effective wavelength of the driving frequency (Λ� 1/ωd), the moving boundary and
Robin-boundary systems produce almost identical spectral functions, even though the
modulation used for the plot has nonvanishing η̇ at the start and end. On the other
hand, when the effective length is larger than the effective wavelength of the driving
frequency (Λ � 1/ωd), the spectral functions from the moving boundary system and
the Robin-boundary systems differ: the radiation from the moving boundary has a
higher intensity, and the spectrum from the Robin boundary condition decays more
rapidly at high frequencies. Both of these behaviours result from the square root factors
which suppress the beta coefficients in (4.2).

One of the signatures of the DCE radiation is that emitted photons are entangled. We
can quantify the amount of entanglement produced using the negativity [28, 29] which
is defined as minus the sum of the negative eigenvalues of the partially transposed state.
We show in appendix C that for perturbative Bogoliubov coefficients of the type (4.1)–
(4.2) the leading term in the negativity between sharply peaked field modes k and k′ is
given by ∆k|B̂k′k| where ∆k is the spectral line-width of the frequencies.

For the driving function given in equation (5.2), |B̂k′k| is highest for values of k + k′

near the driving frequency. Therefore, we define ∆ω = (k − k′)/2, and we expand the
frequencies near half driving-frequency as:

k = ωd/2 + ∆ω , (5.5a)

k′ = ωd/2−∆ω . (5.5b)

The results for |B̂k′k| as a function of ∆ω/ωd are shown in Fig. 2. These plots are
qualitatively similar to those of Fig. 14 in [12] for the “without resonator” line. We
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Figure 1: Photon flux densities n(k) (5.3) for the semiopen waveguide in terms of the
reduced frequency k = k/ωd for moving boundary (red dashed) and non-moving time-
varying Robin boundary (blue solid). (Left) In the small effective length limit Λ� 1/ωd
the two systems display near identical behavior. (Right) In the large effective length
limit Λ � 1/ωd the moving and non-moving systems have different photon production
profiles. In both plots we use the values (in units with v = 1), ε = 0.25, ωd = 0.155mm−1

and tf − t0 = 40.5mm. In the Left plot we take Λ = 0.44mm and in the Right plot we
take Λ = 10mm. The parameters in the Left plot can be matched to those suggested in
[12] by taking the propagation velocity v = 1.2 × 1011mm/s and noting that Leff

0 → Λ,
δLeff

0 /L
eff
0 → ε.
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Figure 2: The plots show the negativity function |B̂k′k| = N /∆k (see appendix C)
with k = ωd/2 + ∆ω and k′ = ωd/2 − ∆ω in terms of ∆ω/ωd for moving boundary
(red dashed) and non-moving time-varying Robin boundary (blue solid). (Left) In the
small effective length limit Λ � 1/ωd the two systems display near identical behavior.
(Right) In the large effective length limit Λ � 1/ωd the moving system produces more
entanglement than the non-moving system. We use the same parameters as in Fig. 1.
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again observe good agreement when Λ� 1/ωd between moving mirrors and non-moving
microwave waveguides. Also, when Λ� 1/ωd we find that the moving mirrors generate
more entanglement than their associated non-moving microwave waveguide simulations.

The entanglement considered above is entanglement between the field modes. This
entanglement could be observed directly with a homodyne setup by coupling the emitted
radiation into an optics circuit with stationary photodetectors. Another possibility
would be to harvest the entanglement by inserting localised detectors, such as an atomic
qubit. This has been discussed in a range of settings in [30, 31, 32, 33, 34, 35] and the
references therein.

5.2 Closed waveguide

For the closed waveguide, the evolution of a massless field under the time-dependent
Robin boundary condition was given in subsection 4.2. The evolution of a massless
field in a moving, mechanically rigid cavity of proper length L with Dirichlet boundary
conditions is given by [19, 20]

αmn = eiωm(τf−τ0)
(
δmn + Âmn +O

(
a2
))

, (5.6a)

βmn = eiωm(τf−τ0)B̂mn +O
(
a2
)
, (5.6b)

where

Ânn = 0 , (5.7a)

Âmn = −
iπ
√
mn
(
1− (−1)m+n)

L2(ωm − ωn)2

∫ τf

τ0

e−i(ωm−ωn)(τ−τ0) a(τ) dτ for m 6= n , (5.7b)

B̂mn =
iπ
√
mn
(
1− (−1)m+n)

L2(ωm + ωn)2

∫ τf

τ0

e−i(ωm+ωn)(τ−τ0) a(τ) dτ , (5.7c)

m and n are positive integers, ωm and ωn are given by (4.8), τ is the proper time at the
centre of the cavity and a(τ) is the proper acceleration at the centre of the cavity.

Comparing (4.9)–(4.10) and (5.6)–(5.7), we see that the massless field in the rigidly
moving cavity can be simulated to the leading order in perturbation theory by the
near-Dirichlet Robin boundary condition provided we choose η1(τ) = η2(τ) and a(τ) =
L∂2

τη1(τ), and the modulation starts and ends so gently that both η and η̇ vanish.
Again, this is precisely the relation one would have expected from (1.3) and (1.4), and
the simulation is reliable in the frequency range where the first-order perturbation theory
results on both sides are reliable.

Comparing further with (4.6)–(4.7), we see that the rigidly moving cavity can be
simulated by the far-from-Dirichlet Robin boundary condition with η1(τ) = η2(τ) and
a(τ) = L∂2

τη1(τ) when the frequencies are much smaller than κ−1
1 and κ−1

2 and the
modulation starts and ends so gently that both η and η̇ vanish.
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We anticipate that the simulation can be extended to a moving cavity that is not
rigid, in the small amplitude regime commonly considered in the DCE literature [3, 4, 5],
by equating Lη1(t) (respectively Lη2(t)) to the variation in the position of the left (right)
boundary. We have however not examined this question systematically.

6 Conclusions

In this paper we have analysed the evolution of a quantum field in 1+1 dimensions under
time-dependent Robin boundary conditions that occur in superconducting microwave
circuit experiments in the high plasma frequency limit. We solved the evolution explicitly
to linear order in the time variation of the Robin boundary condition, in a formalism
that allowed us to handle both a semiopen waveguide and a closed waveguide, and for
the latter allowing the boundary conditions at the two ends to be varied independently.
For frequencies that are much smaller than the effective inverse length associated with
the SQUID(s) at the end(s) of the waveguide, we verified that a suitable modulation
of the SQUID(s) allows the waveguide to simulate a Dirichlet boundary condition at a
mechanically moving boundary of the DCE, even in the regime where the mechanical
motion is relativistic; both the experiment reported in [6] and the experimental proposals
of [8, 9, 10] appear to operate within in this domain by a margin of approximately
one order of magnitude. For higher frequencies the waveguide still exhibits particle
creation and mode mixing, but these can no longer be quantitatively matched to those
of the DCE, and in particular the large frequency falloff properties in the evolution
are qualitatively different. These features in the large frequency Bogoliubov coefficients
result in differing particle emission spectrum for the moving and non-moving systems
when the effective length is larger than the inverse driving frequency L� 1/ωd. In this
limit, mechanically moving boundary radiation can be characterised as having a larger
total flux and a less steep falloff at high frequencies compared to radiation from the
static waveguide with time-varying Robin boundary conditions.

While the analogy between a moving Dirichlet boundary and a time-varying Robin
boundary condition is useful for simulation purposes it is important to keep in mind
that the physical systems corresponding to these two situations are different and there-
fore can lead to different outcomes. On the one hand, our results support proposals to
simulate in a mechanically static waveguide quantum phenomena due to motion, includ-
ing entanglement generation and degradation, even in a regime where the mechanically
moving system experiences significant relativistic effects [8, 9, 10]. On the other hand,
our results demonstrate that the interpretation of a waveguide experiment in terms of
the simulation of the DCE is possible only in certain parameter ranges. Within the
Robin boundary condition approximation that we have analysed, the range of DCE in-
terpretation is determined just by the effective inverse length scale set by the SQUID(s)
at the end(s) of the waveguide. It remains a subject to future work to establish the
range of DCE interpretation when all relevant effects beyond the Robin boundary con-
dition approximation are considered [11, 12], including the effects due to a large but
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finite SQUID plasma frequency analysed in [13, 14, 15].
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A Perturbative Bogoliubov identities

In this appendix we record identities satisfied by a perturbative expansion of the Bo-
goliubov coefficients. These identities are used in the main text for consistency checks
of the perturbative treatment.

Let α and β denote the matrices of a Bogoliubov transformation in the notation
of [27], with the matrix elements αjk and βjk. The indices may be discrete or continuous;
in the latter case the matrix is understood as the kernel of an integral operator and may
include a distributional part. By construction, the matrices satisfy the Bogoliubov
identities

I = αα† − ββ† , (A.1a)

0 = αβT − βαT , (A.1b)

where I stands for the identity matrix.
Suppose now that α and β have the formal power series expansions

α = I + εα1 + ε2α2 + ε3α3 + · · · , (A.2a)

β = εβ1 + ε2β2 + ε3β3 + · · · , (A.2b)

where ε is a real-valued expansion parameter. Substituting (A.2) in (A.1) and collecting
terms order by order, order ε0 is identically satisfied while orders ε1 and ε2 give

ε1 :

{
0 = α1 + α†1 ,

0 = β1 − βT1 ,
(A.3a)

ε2 :

{
0 = α1α

†
1 − β1β

†
1 + α2 + α†2 ,

0 = β1α
T
1 − α1β

T
1 + β2 − βT2 .

(A.3b)
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When α and β are real, (A.3) simplifies to

ε1 :

{
α1 = −αT1 ,

β1 = βT1 ,
(A.4a)

ε2 : (α1 ± β1)2 = α2 + αT2 ±
(
β2 − βT2

)
. (A.4b)

B Accelerated boundary in Minkowski spacetime

In this appendix we consider a quantised massless scalar field in (1 + 1)-dimensional
Minkowski spacetime subject to the Dirichlet boundary condition at one accelerated
boundary, in the limit where the acceleration is treated perturbatively but may have
arbitrary time-dependence, and the velocity and travel distance of the boundary remain
arbitrary. We follow the methods that were developed for a mechanically rigid acceler-
ated cavity in [19, 20]. The results overlap with those in the DCE literature [3, 4, 5]
for small amplitude oscillations in the common domain of validity. The corresponding
problem for a classical scalar field has been analysed in [36, 37, 38].

B.1 Inertial boundary to uniformly accelerated boundary

We work with a massless scalar field φ in (1 + 1)-dimensional Minkowski spacetime, in
the notation of the main text: the metric is ds2 = −dt2 + dx2, and the wave equation is
(2.1) with µ = 0.

For t < 0, we take the field to live in the half-space x ≥ a−1, where a is a positive
constant of dimension inverse length, and we adopt at x = a−1 the Dirichlet boundary
condition. We adopt the basis of mode functions

φk(t, x) =
1√
πk

e−ikt sin[k(x− a−1)] , (B.1)

where k > 0. φk has the positive frequency k with respect to ∂t, and the normalisation
in the Klein-Gordon inner product is (φk, φk′) = δ(k − k′).

For t ≥ 0, we make the boundary follow the uniformly-accelerated worldline x =√
t2 + a−2. The proper acceleration of the boundary is equal to a. The field lives in the

region x ≥
√
t2 + a−2, and we take the field to satisfy the Dirichlet boundary condition

at the accelerated boundary. We adopt the basis of mode functions

Φk(t, x) =
1

2i
√
πk

{[
a(x− t)

]ik/a − [a(x+ t)
]−ik/a}

, (B.2)

where k > 0. Φk has the positive frequency k/a with respect to the boost Killing vector
x∂t + t∂x, and it has the positive frequency k with respect to the proper time of the
boundary. The normalisation in the Klein-Gordon inner product is (Φk,Φk′) = δ(k−k′).
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At the junction t = 0, we match the two sets of modes by the Bogoliubov transfor-
mation

Φk′ =

∫ ∞
0

(
oαk′kφk + oβk′kφk

)
dk . (B.3)

From the inner products that give the Bogoliubov coefficients [27], we find

oαk′k =
1

πa

√
k′

k
Re

[∫ ∞
1

dy

y
y−ik

′/a ei(k/a)(y−1)

]
, (B.4a)

oβk′k =
1

πa

√
k′

k
Re

[∫ ∞
1

dy

y
yik
′/a ei(k/a)(y−1)

]
. (B.4b)

B.2 Small acceleration expansion

We wish to find the asymptotic form of oαk′k and oβk′k (B.4) when the acceleration a of
the boundary is small compared with both k and k′.

The small a expansion of oβk′k may be obtained by applying to (B.4b) the method
of repeated integration by parts [39]. The result is

oβkk′ =
a
√
k′k

π(k + k′)3 +O
(
a3
)
. (B.5)

The small a expansion of oαk′k is more involved since we expect the coefficients in this
expansion to be no longer functions but distributions, the leading term being δ(k− k′).
We shall not give a rigorous treatment but proceed heuristically as follows.

Starting from the integral in (B.4a), we replace k in the integrand by k + iε where
ε > 0. If ε is considered fixed, the asymptotic small a expansion can be obtained by the
method of repeated integration by parts [39], with the result

oαk′k =
1

π

√
k′

k

{
− Im

[
1

(k − k′ + iε)

]
+ aRe

[
k + iε

(k − k′ + iε)3

]

+ a2 Im

[
(k + iε)

[
2(k + iε) + k′

]
(k − k′ + iε)5

]
+O

(
a3
)}

. (B.6)

Each of the three terms shown in (B.6) has a well-defined distributional limit as ε→ 0,
as follows from the identity

lim
ε→0+

∫
dk

f(k)

k + iε
= −iπf(0) + P

∫
dk

f(k)

k
, (B.7)

and its derivatives. Assuming that the ε→ 0 limit commutes with the small a expansion,
we obtain

oαk′k = δ(k − k′) + aG1(k′, k) + a2G2(k′, k) +O
(
a3
)
, (B.8)
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where the distributions G1 and G2 are given by∫ ∞
0

dk G1(k′, k) f(k) =
(k′)1/2

2π
P

∫ ∞
0

dk
1

(k − k′)
∂2
k

(
k1/2 f(k)

)
, (B.9a)

∫ ∞
0

dk G2(k′, k) f(k) = −(k′)1/2

12
∂4
k′

(
(k′)

3/2
f(k′)

)
− (k′)3/2

24
∂4
k′

(
(k′)

1/2
f(k′)

)
.

(B.9b)

Both G1 and G2 are hence representable by a function except at the coincidence limit,
and we may write

G1(k′, k) =

√
kk′

π (k − k′)3 for k 6= k′ , (B.10a)

G2(k′, k) = 0 for k 6= k′ . (B.10b)

As a consistency check, the expansions in (B.5) and (B.8) satisfy the linear order
Bogoliubov identities (A.4a). The quadratic order Bogoliubov identities (A.4b) would
require a distributional treatment and we shall not analyse them here.

B.3 Arbitrarily-accelerated boundary

Let τ denote the proper time of the boundary and a(τ) the proper acceleration of
the boundary, such that positive (negative) values of a(τ) mean acceleration towards
increasing (decreasing) x. We assume that a(τ) is vanishing outside the interval τ0 ≤
τ ≤ τf and non-negative within this interval, and we assume that a(τ) remains much
smaller than the frequencies to be considered.

We define the early (respectively late) time modes by (B.1) in the inertial frame in
which the boundary is at rest in the early (late) times. Proceeding as in [19, 20], or in
Section 4 of the present paper, we find that the Bogoliubov coefficients from the early
time modes to the late time modes are

αk′k = eik
′(τf−τ0)

(
δ(k − k′) + Âk′k +O

(
a2
))

, (B.11a)

βk′k = eik
′(τf−τ0)B̂k′k +O

(
a2
)
, (B.11b)

where

Âk′k = − i
√
kk′

π(k − k′)2

∫ τf

τ0

e−i(k
′−k)(τ−τ0) a(τ) dτ for k 6= k′ , (B.12a)

B̂k′k =
i
√
kk′

π(k + k′)2

∫ τf

τ0

e−i(k
′+k)(τ−τ0) a(τ) dτ , (B.12b)

and we omit the examination of the distributional part of Âk′k at k = k′.
The above treatment assumes a(τ) to be non-negative. We shall not examine the

validity of (B.12) when a(τ) may take negative values.
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C Entanglement formula for continuous spectra

In this appendix we derive the formula for the perturbative approximation to the bipar-
tite mode entanglement of the field, as measured by the entanglement negativity, in the
case when the field solutions have continuous spectra. These generalise the negativity
formulas found for field solutions with discrete eigenvalues in [40]. The field is prepared
initially in the vacuum state and is subjected to an evolution which can be described
by Bogoliubov transformations that are assumed to take the general form:

αk′k = c(k′)
(
δ(k − k′) + Âk′k +O

(
η2
))

, (C.1a)

βk′k = c(k′)B̂k′k +O
(
η2
)
, (C.1b)

where η � 1, k and k′ are continuous real-valued parameters, Âk′k and B̂k′k are of
linear order in η and c(k) is a phase taking the general form, c(k) = eif(k), where f
is a real-valued function of k. Furthermore, we assume that Âk′k and B̂k′k satisfy the
conditions:

Âk′k = −Â?kk′ for k 6= k′, (C.2a)

B̂k′k = B̂kk′ , (C.2b)

where the star denotes complex conjugation. Equations (C.2) are satisfied by the evo-
lution in the semiopen waveguide (4.1) and by the evolution with the accelerated mir-
ror (B.12).

The added difficulty of systems with continuous spectra is that the states are Dirac
δ-normalised which can lead to apparent infinities in formulas for the entanglement if
not correctly handled. The infinities are an artefact of working with infinitely precise
frequencies which in practice is not possible — there is always a spectral line-width,
∆k, associated with the measurement of a frequency. Experiments which measure bi-
partite entanglement of the field do so by measuring two distinct frequencies each with
a small line-width. For simplicity, we will assume that the modes measured are uniform
wavepackets of frequencies having spectral line-width ∆k and central frequencies kp, k′p
respectively. We define:

fkp(k) =


1√
∆k

for k ∈ (kp − ∆k
2
, kp + ∆k

2
),

0 otherwise.
(C.3)

We will also assume that the measured frequencies are sufficiently separated such that
there is no overlap of their supports in frequency space:∫

fkp(k)fk′p(k)dk = 0. (C.4)
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Let â(k) be the annihilation operator associated with the frequency k. After the
evolution the annihilation operators are transformed by the Bogoliubov transfomations
according to:

ˆ̄a(k) =

∫ (
α?kk′ â(k′)− β?kk′ â(k′)†

)
dk′. (C.5)

The quadrature operators associated with these frequencies are:

ˆ̄x(k) = ˆ̄a(k) + ˆ̄a(k)†, (C.6a)

ˆ̄p(k′) =
1

i

(
ˆ̄a(k)− ˆ̄a(k)†

)
, (C.6b)

where we use the conventions of [41].
As already alluded these frequencies are not measured precisely rather the actual

measurement occurs over a small band of frequencies. We can define the quadrature
operators associated with a wavepacket centred at the frequency kp by:

ˆ̄xkp =

∫
fkp(k)ˆ̄x(k)dk, (C.7a)

ˆ̄pkp =

∫
fkp(k)ˆ̄p(k)dk. (C.7b)

A short calculation shows that the quadrature operators satisfy the commutation rela-
tions: [

ˆ̄xi, ˆ̄pj
]

= 2iδij, (C.8a)[
ˆ̄xi, ˆ̄xj

]
=

[
ˆ̄pi, ˆ̄pj

]
= 0, (C.8b)

where i, j ∈ {kp, k
′
p}.

Since the Bogoliubov transformations are linear and the vacuum state is a Gaussian
state, it follows that the final state of the field will also be a Gaussian state. Gaussian
states are completely characterised by their first and second statistical moments. It is
the second moments which are important for determining the amount of entanglement
in a Gaussian state. The second moments can be arranged into a covariance matrix: we
define R = (ˆ̄xkp , ˆ̄pkp , ˆ̄xk′p , ˆ̄pk′p), then the covariance matrix can be defined by:

σij =
1

2
〈{Ri, Rj}〉 − 〈Ri〉〈Rj〉, (C.9)

where curly braces denote anti-commutator and the covariance matrix is normalised
such that the covariance matrix of the vacuum state is the identity matrix. Expectation
values are to be taken with respect to the initial state which in our case is the vacuum
state. It is easy to see that the second term in (C.9) vanishes.
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We define the kernels:

X(k, k′) =
1

2
〈{ˆ̄x(k), ˆ̄x(k′)}〉

=

∫
dl(α?kl − βkl)(αk′l − β?k′l), (C.10a)

H(k, k′) =
1

2
〈{ˆ̄x(k), ˆ̄p(k′)}〉

= i

∫
dl(α?kl − βkl)(αk′l + β?k′l)− iδ(k − k′), (C.10b)

P (k, k′) =
1

2
〈{ ˆ̄p(k), ˆ̄p(k′)}〉

=

∫
dl(α?kl + βkl)(αk′l + β?k′l), (C.10c)

and the matrix:

S(k, k′) =

(
X(k, k′) H(k, k′)
H(k′, k) P (k, k′)

)
, (C.11)

then the covariance matrix takes the form:

σ =

(
σa σc
σTc σb

)
, (C.12)

where superscript T indicates matrix transposition and

σa ≡
∫
fkp(k)fkp(k′)S(k, k′)dkdk′, (C.13a)

σb ≡
∫
fk′p(k)fk′p(k′)S(k, k′)dkdk′, (C.13b)

σc ≡
∫
fkp(k)fk′p(k′)S(k, k′)dkdk′. (C.13c)

Using relations (C.1) and (C.2), the matrix S(k, k′) simplifies to

S(k, k′) = δ(k − k′) + S1(k, k′) +O(η2), (C.14)

where the matrix elements of S1(k, k′) are given by:

S1
11 = −S1

22 = −c(k)?β?k′k − c(k′)βkk′ , (C.15a)

S1
21 = −S1

12 = i
(
c(k)?β?k′k − c(k′)βkk′

)
. (C.15b)

We can also write the covariance matrix as a Taylor expansion in η:

σ = σ0 + σ1 +O(η2), (C.16)
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and with equation (C.14) it is easily seen that σ0 is the 4× 4 identity matrix.
To determine the bipartite entanglement, it is necessary to calculate the symplectic

eigenvalues, ν̃±, of the covariance matrix of the partially transposed state, σ̃. The partial
transpose is implemented by a transformation of the covariance matrix given by [42]:

σa → σ̃a = σa, (C.17a)

σb → σ̃b = σ3σbσ3, (C.17b)

σc → σ̃c = σcσ3, (C.17c)

where σ3 = diag(1,−1) is the z-direction Pauli matrix.
The symplectic values of σ̃ can be found from the absolute values of the eigenvalues

of the matrix Ωσ̃, where Ω = diag(ω, ω) and

ω =

(
0 1
−1 0

)
. (C.18)

The zeroth order eigenvalues are ±i and both eigenvalues have double degeneracy. It
is therefore necessary to use degenerate perturbation theory to determine the eigenvalues
to the linear order. The linear order corrections to the eigenvalues are found to be:

λ± = ±2i
√
I, (C.19)

where

I ≡
∫
dl

∫
dl′
∫
dk

∫
dk′fkp(l)fk′p(l′)fkp(k)fk′p(k′)c(l′)c(k)?βll′β

?
k′k. (C.20)

The symplectic eigenvalues are therefore:

ν̃± = |1± 2
√
I|, (C.21)

and the negativity is:

N = max

(
0,

1− ν̃s
2ν̃s

)
, (C.22)

where ν̃s is the smallest of the two symplectic values. Let us now assume that the
wavepackets are very sharply peaked ∆k/kp � 1 and ∆k/k′p � 1, then the integrals in
equation (C.20) can be approximated by:

I = ∆k2c(k′p)c(kp)?βkpk′pβ
?
k′pkp

= ∆k2|B̂kpk′p |
2, (C.23)

and the negativity (to first order in η) simplifies to:

N = ∆k|B̂kpk′p |. (C.24)

This is the continuous spectrum formula for the entanglement negativity and holds
for non-integer values of the frequencies. It is equivalent to the formula for discrete
frequency modes in the case when the modes have opposite parity, i.e., when (k+ k′) is
odd [40].
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[36] J. Dittrich, P. Duclos and P. Šeba, “Instability in a classical periodically driven
string,” Phys. Rev. E 49, 3535 (1994).

[37] J. Dittrich, P. Duclos and N. Gonzalez, “Stability and instability of the wave equa-
tion solutions in a pulsating domain,” Rev. Math. Phys. 10, 925 (1998).

[38] J. Dittrich and P. Duclos, “Massive scalar field in a one-dimensional oscillating
region,” J. Phys. A 35, 8213 (2002) [arXiv:math-ph/0206047].

[39] R. Wong, Asymptotic Approximations of Integrals (Society for Industrial and Ap-
plied Mathematics, Philadelphia, 2001).

[40] N. Friis, D. E. Bruschi, J. Louko and I. Fuentes, “Motion generates entanglement,”
Phys. Rev. D 85, 081701(R) (2012) [arXiv:1201.0549 [quant-ph]].

28

http://arxiv.org/abs/1002.2139
http://arxiv.org/abs/quant-ph/9604005
http://arxiv.org/abs/quant-ph/9605038
http://arxiv.org/abs/quant-ph/9605038
http://arxiv.org/abs/1312.6315
http://arxiv.org/abs/1407.7567
http://arxiv.org/abs/1412.4819
http://arxiv.org/abs/0807.4356
http://arxiv.org/abs/1003.2201
http://arxiv.org/abs/1408.3420
http://arxiv.org/abs/math-ph/0206047
http://arxiv.org/abs/1201.0549


[41] C. Weedbrook, S. Pirandola, R. Garćıa-Patrón, N. J. Cerf, T. C. Ralph,
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