20 research outputs found

    CASCADE MULTIPLE MOSFET IN CURRENT-MODE LOGIC BUFFER TO REDUCE COMMON MODE NOISE OF SERDES

    Get PDF
    Addressing the common-mode (CM) noise issue in a Serializer/Deserializer (SerDes) raises a variety of challenges. To address those types of challenges, techniques are presented herein that support cascading multiple metal–oxide–semiconductor field-effect transistors (MOSFETs) in a current-mode logic (CML) output buffer to reduce the CM noise in a SerDes with nearly no impact on, among other things, cost, thermal performance, chip real estate, and power consumption

    MULTI-PORT ELECTROMAGNETIC INTERFERENCE IMPROVEMENT USING HETEROGENEOUS PORTS

    Get PDF
    Techniques are provided herein for using different profiles on different ports for different radiation directions in multi-port projects. Because the superposition effect is weakened, the maximum radiation of a project is about 3dB smaller than those with uniform ports

    Scattered differentiation of unlinked loci across the genome underlines ecological divergence of the selfing grass Brachypodium stacei

    Get PDF
    Ecological divergence without geographic isolation, as an early speciation process that may lead finally to reproductive isolation through natural selection, remains a captivating topic in evolutionary biology. However, the pattern of genetic divergence underlying this process across the genome may vary between species and mating systems. Here, we present evidence that Brachypodium stacei, an annual and highly selfing grass model species, has undergone sympatric ecological divergence without geographic isolation. Genomic, transcriptomic, and metabolomic analyses together with lab experiments mimicking the two opposite environmental conditions suggest that diploid B. stacei populations have diverged sympatrically in two slopes characterized by distinct biomes at Evolution Canyon I (ECI), Mount Carmel, Israel. Despite ongoing gene flow, primarily facilitated by seed dispersal, the level of gene flow has progressively decreased over time. This local adaptation involves the scattered divergence of many unlinked loci across the total genome that include both coding genes and noncoding regions. Additionally, we have identified significant differential expressions of genes related to the ABA signaling pathway and contrasting metabolome composition between the arid- vs. forest-adapted B. stacei populations in ECI. These results suggest that multiple small loci involved in environmental responses act additively to account for ecological adaptations by this selfing species in contrasting environments

    Allelic shift in cis-elements of the transcription factor RAP2.12 underlies adaptation associated with humidity in Arabidopsis thaliana

    Get PDF
    Populations of widespread species are usually geographically distributed through contrasting stresses, but underlying genetic mechanisms controlling this adaptation remain largely unknown. Here, we show that in Arabidopsis thaliana, allelic changes in the cis-regulatory elements, WT box and W box, in the promoter of a key transcription factor associated with oxygen sensing, RELATED TO AP 2.12 (RAP2.12), are responsible for differentially regulating tolerance to drought and flooding. These two cis-elements are regulated by different transcription factors that downstream of RAP2.12 results in differential accumulation of hypoxia-responsive transcripts. The evolution from one cis-element haplotype to the other is associated with the colonization of humid environments from arid habitats. This gene thus promotes both drought and flooding adaptation via an adaptive mechanism that diversifies its regulation through noncoding alleles

    Characteristics of an epidemic outbreak with a large initial infection size

    No full text
    A deterministic model proposed in previous literatures to approximate the well-known Richards model is investigated. However, the model assumption of small initial value for infection size is released in the current manuscript. Taking the advantage of the closed form of solutions, we establish the epidemic characteristics of disease transmission: the outbreak size, the peak size and the turning point for the cumulative infected cases. It is shown that the usual disease outbreak threshold condition (the basic reproduction number R0 \mathcal {R}_0 is greater than unity) fails to fully guarantee the existence of peaking time and turning point when the initial infection size is not relatively small. The epidemic characteristics not only depend on R0 \mathcal {R}_0 but also on another index, the net reproduction number R0 \mathcal {R}^*_0

    Stability and Stabilization of Delayed Neural Networks with Hybrid Impulses

    No full text
    In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are investigated. The hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally, two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with hybrid impulses

    A tumor-penetrable drug nanococktail made from human histones for interventional nucleus-targeted chemophotothermal therapy of drug-resistant tumors

    No full text
    Nanoparticle-based chemophotothermal therapy (CPT) is a promising treatment for multidrug resistant tumors. In this study, a drug nanococktail of DIR825@histone was developed by employing doxorubicin (DOX), NIR dye IR825 and human histones for interventional nucleus-targeted CPT of multidrug resistant tumors with an interventional laser. After localized intervention, DIR825@histone penetrated tumor tissues by transcytosis, efficiently entered tumor cells and targeted the cell nuclei. DIR825@histone also exhibited good photothermal performance and thermal-triggered drug release. Efficient multidrug resistant tumor inhibition was achieved by enhanced CPT sensitization and MDR reversion via nuclear targeting. Moreover, an interventional laser assisted DIR825@histone in inhibiting multidrug resistant tumors by promoting the sufficient delivery of laser energy inside the tumor while reducing skin injury. Therefore, DIR825@histone together with this interventional nucleus-targeted CPT strategy holds great promise for treating multidrug resistant tumors

    A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis

    No full text
    Camptothecin is a monoterpene indole alkaloid with anti-tumor activity. Here, the authors assemble the genome of the camptothecin producing plant Camptotheca acuminata and provide insights into the evolutionary origin of camptothecin biosynthesis by comparing to the vinblastine and vincristine biosynthetic pathway in Catharanthus roseus
    corecore