300 research outputs found

    Development and Validation of an Index Based on EAT-Lancet Recommendations: The Planetary Health Diet Index

    Get PDF
    The EAT-Lancet Commission has proposed a planetary health diet. We propose the development of the Planetary Health Diet Index (PHDI) based on this proposed reference diet. We used baseline dietary data obtained through a 114-item FFQ from 14, 779 participants of the Longitudinal Study on Adult Health, a multicenter cohort study conducted in Brazil. The PHDI has 16 components and a score from 0 to 150 points. Validation and reliability analyses were performed, including principal component analyses, association with selected nutrients, differences in means between groups (for example, smokers vs. non-smokers), correlations between components and total energy intake, Cronbach''s alpha, item-item correlations, and linear regression analysis between PHDI with carbon footprint and overall dietary quality. The mean PHDI was 60.4 (95% CI 60.2:60.5). The PHDI had six dimensions, was associated in an expected direction with the selected nutrients and was significantly (p < 0.001) lower in smokers (59.0) than in non-smokers (60.6). Cronbach''s alpha value was 0.51. All correlations between components were low, as well as between components and PHDI with total energy intake. After adjustment for age and sex, the PHDI score remained associated (p < 0.001) with a higher overall dietary quality and lower carbon footprint. Thus, we confirmed the PHDI validity and reliability

    How doctors diagnose diseases and prescribe treatments: an fMRI study of diagnostic salience

    Get PDF
    Understanding the brain mechanisms involved in diagnostic reasoning may contribute to the development of methods that reduce errors in medical practice. In this study we identified similar brain systems for diagnosing diseases, prescribing treatments, and naming animals and objects using written information as stimuli. Employing time resolved modeling of blood oxygen level dependent (BOLD) responses enabled time resolved (400 milliseconds epochs) analyses. With this approach it was possible to study neural processes during successive stages of decision making. Our results showed that highly diagnostic information, reducing uncertainty about the diagnosis, decreased monitoring activity in the frontoparietal attentional network and may contribute to premature diagnostic closure, an important cause of diagnostic errors. We observed an unexpected and remarkable switch of BOLD activity within a right lateralized set of brain regions related to awareness and auditory monitoring at the point of responding. We propose that this neurophysiological response is the neural substrate of awareness of one’s own (verbal) response. Our results highlight the intimate relation between attentional mechanisms, uncertainty, and decision making and may assist the advance of approaches to prevent premature diagnostic closure
    • 

    corecore