72 research outputs found

    Collagen-induced Platelet Shape Change Is Not Affected by Positive Feedback Pathway Inhibitors and cAMP-elevating Agents

    Get PDF
    Shape change is the earliest response of platelets to stimuli; it is mainly dependent upon Ca(2+)/calmodulin interaction subsequent to Ca(2+) mobilization and is mediated by myosin light chain kinase (MLCK) activation. It has been recently suggested that collagen itself is not able to elicit platelet shape change in the absence of ADP and thromboxane A(2) costimulation but is capable of inducing MLCK activation. Since we hypothesize that the morphological changes of the few platelets that adhere to collagen might not be revealed by turbidimetry, the aim of this study was to assess platelet shape change using transmission electron microscopy, in the absence of the amplificatory feedback pathways of ADP and thromboxane A(2). Our results demonstrated that only the platelets in contact with insoluble collagen fibers underwent a typical shape change, whereas those further away remained quiescent. Moreover, since cAMP enhances Ca(2+) mobilization in response to collagen, in the present study, we also investigated whether cAMP is involved in the inhibition of collagen-induced platelet shape change and MLC phosphorylation. Platelets were thus treated with iloprost (28 nm) prior to stimulation. Electron microscopy studies demonstrated that iloprost did not modify collagen-induced shape change, whereas immunoblotting studies showed a slight inhibition of MLC phosphorylation in the presence of enhanced cAMP levels. We can thus conclude that collagen is able to cause platelet shape change through activation of Ca(2+)/calmodulin-dependent MLCK, without the involvement of amplificatory pathways. Enhanced cytosolic cAMP levels do not inhibit collagen-induced platelet shape change but exert a weak inhibitory action on MLCK

    Impact of chronic exposure to bevacizumab on EpCAM-based detection of circulating tumor cells

    Get PDF
    BACKGROUND: Circulating tumor cells (CTCs) are often undetected through the immunomagnetic epithelial cell adhesion molecule (EpCAM)-based CellSearch(®) System in breast and colorectal cancer (CRC) patients treated with bevacizumab (BEV), where low CTC numbers have been reported even in patients with evidence of progression of disease. To date, the reasons for this discrepancy have not been clarified. This study was carried out to investigate the molecular and phenotypic changes in CRC cells after chronic exposure to BEV in vitro. METHODS: The human CRC cell line WiDr was exposed to a clinically relevant dose of BEV for 3 months in vitro. The expression of epithelial and mesenchymal markers and EpCAM isoforms was determined by western blotting and immunofluorescence. To evaluate the impact of EpCAM variant isoforms expression on CTC enumeration by CellSearch(®), untreated and treated colon cancer cells were spiked into 7.5 mL of blood from a healthy donor and enumerated by CellSearch(®). RESULTS: Chronic exposure of CRC cell line to BEV induced decreased expression of EpCAM 40 kDa isoform and increased expression EpCAM 42 kDa isoform, together with a decreased expression of cytokeratins (CK), while no evidence of epithelial to mesenchymal transition (EMT) in treated cells was observed. The recovery rate of cells through CellSearch(®) was gradually reduced in course of treatment with BEV, being 84%, 70% and 40% at 1, 2 and 3 months, respectively. CONCLUSIONS: We hypothesize that BEV may prevent CellSearch(®) from capturing CTCs through altering EpCAM isoforms

    CRISPR/Cas9-mediated deletion of Interleukin-30 suppresses IGF1 and CXCL5 and boosts SOCS3 reducing prostate cancer growth and mortality

    Get PDF
    Background Metastatic prostate cancer (PC) is a leading cause of cancer death in men worldwide. Targeting of the culprits of disease progression is an unmet need. Interleukin (IL)-30 promotes PC onset and development, but whether it can be a suitable therapeutic target remains to be investigated. Here, we shed light on the relationship between IL30 and canonical PC driver genes and explored the anti-tumor potential of CRISPR/Cas9-mediated deletion of IL30. Methods PC cell production of, and response to, IL30 was tested by flow cytometry, immunoelectron microscopy, invasion and migration assays and PCR arrays. Syngeneic and xenograft models were used to investigate the effects of IL30, and its deletion by CRISPR/Cas9 genome editing, on tumor growth. Bioinformatics of transcriptional data and immunopathology of PC samples were used to assess the translational value of the experimental findings. Results Human membrane-bound IL30 promoted PC cell proliferation, invasion and migration in association with STAT1/STAT3 phosphorylation, similarly to its murine, but secreted, counterpart. Both human and murine IL30 regulated PC driver and immunity genes and shared the upregulation of oncogenes, BCL2 and NFKB1, immunoregulatory mediators, IL1A, TNF, TLR4, PTGS2, PD-L1, STAT3, and chemokine receptors, CCR2, CCR4, CXCR5. In human PC cells, IL30 improved the release of IGF1 and CXCL5, which mediated, via autocrine loops, its potent proliferative effect. Deletion of IL30 dramatically downregulated BCL2, NFKB1, STAT3, IGF1 and CXCL5, whereas tumor suppressors, primarily SOCS3, were upregulated. Syngeneic and xenograft PC models demonstrated IL30's ability to boost cancer proliferation, vascularization and myeloid-derived cell infiltration, which were hindered, along with tumor growth and metastasis, by IL30 deletion, with improved host survival. RNA-Seq data from the PanCancer collection and immunohistochemistry of high-grade locally advanced PCs demonstrated an inverse association (chi-squared test, p = 0.0242) between IL30 and SOCS3 expression and a longer progression-free survival of patients with IL30(Neg)SOCS3(Pos)PC, when compared to patients with IL30(Pos)SOCS3(Neg)PC. Conclusions Membrane-anchored IL30 expressed by human PC cells shares a tumor progression programs with its murine homolog and, via juxtacrine signals, steers a complex network of PC driver and immunity genes promoting prostate oncogenesis. The efficacy of CRISPR/Cas9-mediated targeting of IL30 in curbing PC progression paves the way for its clinical use

    Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery

    Get PDF
    Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity

    Primary Effusion Lymphoma Cell Death Induced by Bortezomib and AG 490 Activates Dendritic Cells through CD91

    Get PDF
    To understand how cytotoxic agent-induced cancer cell death affects the immune system is of fundamental importance to stimulate immune response to counteract the high mortality due to cancer. Here we compared the immunogenicity of Primary Effusion Lymphoma (PEL) cell death induced by anticancer drug Bortezomib (Velcade) and Tyrphostin AG 490, a Janus Activated Kinase 2/signal trasducer and activator of transcription-3 (JAK2/STAT3) inhibitor. We show that both treatments were able to induce PEL apoptosis with similar kinetics and promote dendritic cells (DC) maturation. The surface expression of molecules involved in immune activation, namely calreticulin (CRT), heat shock proteins (HSP) 90 and 70 increased in dying cells. This was correlated with DC activation. We found that PEL cell death induced by Bortezomib was more effective in inducing uptake by DC compared to AG 490 or combination of both drugs. However the DC activation induced by all treatments was completely inhibited when these cells were pretreated with a neutralizing antiboby directed against the HSP90/70 and CRT common receptor, CD91. The activation of DC by Bortezomib and AG 490 treated PEL cells, as seen in the present study, might have important implications for a combined chemo and immunotherapy in such patients

    Secretion of Novel SEL1L Endogenous Variants Is Promoted by ER Stress/UPR via Endosomes and Shed Vesicles in Human Cancer Cells

    Get PDF
    We describe here two novel endogenous variants of the human endoplasmic reticulum (ER) cargo receptor SEL1LA, designated p38 and p28. Biochemical and RNA interference studies in tumorigenic and non-tumorigenic cells indicate that p38 and p28 are N-terminal, ER-anchorless and more stable relative to the canonical transmembrane SEL1LA. P38 is expressed and constitutively secreted, with increase after ER stress, in the KMS11 myeloma line and in the breast cancer lines MCF7 and SKBr3, but not in the non-tumorigenic breast epithelial MCF10A line. P28 is detected only in the poorly differentiated SKBr3 cell line, where it is secreted after ER stress. Consistently with the presence of p38 and p28 in culture media, morphological studies of SKBr3 and KMS11 cells detect N-terminal SEL1L immunolabeling in secretory/degradative compartments and extracellularly-released membrane vesicles. Our findings suggest that the two new SEL1L variants are engaged in endosomal trafficking and secretion via vesicles, which could contribute to relieve ER stress in tumorigenic cells. P38 and p28 could therefore be relevant as diagnostic markers and/or therapeutic targets in cancer

    The Insulin Receptor Substrate 1 (Irs1) in Intestinal Epithelial Differentiation and in Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is associated with lifestyle factors that affect insulin/IGF signaling, of which the insulin receptor substrate 1 (IRS1) is a key transducer. We investigated expression, localization and pathologic correlations of IRS1 in cancer-uninvolved colonic epithelium, primary CRCs with paired liver metastases and in vitro polarizing Caco2 and HT29 cells. IRS1 mRNA and protein resulted higher, relative to paired mucosa, in adenomas of familial adenomatous polyposis patients and in CRCs that overexpressed c-MYC, ß-catenin, InsRß, and IGF1R. Analysis of IRS1 immunostaining in 24 cases of primary CRC with paired colonic epithelium and hepatic metastasis showed that staining intensity was significantly higher in metastases relative to both primary CRC (P<0.01) and colonic epithelium (P<0.01). Primary and metastatic CRCs, compared to colonic epithelium, contained significantly higher numbers of IRS1-positive cells (P = 0.013 and P = 0.014, respectively). Pathologic correlations in 163 primary CRCs revealed that diffuse IRS1 staining was associated with tumors combining differentiated phenotype and aggressive markers (high Ki67, p53, and ß-catenin). In Caco 2 IRS1 and InsR were maximally expressed after polarization, while IGF1R was highest in pre-polarized cells. No nuclear IRS1 was detected, while, with polarization, phosphorylated IRS1 (pIRS1) shifted from the lateral to the apical plasma membrane and was expressed in surface cells only. In HT29, that carry mutations constitutively activating survival signaling, IRS1 and IGF1R decreased with polarization, while pIRS1 localized in nuclear spots throughout the course. Overall, these data provide evidence that IRS1 is modulated according to CRC differentiation, and support a role of IRS1 in CRC progression and liver metastatization
    • …
    corecore