12,608 research outputs found
Statistics of the General Circulation from Cumulant Expansions
Large-scale atmospheric flows may not be so nonlinear as to preclude their
statistical description by systematic expansions in cumulants. I extend
previous work by examining a two-layer baroclinic model of the general
circulation. The fixed point of the cumulant expansion describes the
statistically steady state of the out-of-equilibrium model. Equal-time
statistics so obtained agree well with those accumulated by direct numerical
simulation.Comment: 1 page paper with 4 figures that accompanies one of the winning
entries in the APS gallery of nonlinear images competitio
Leak-rate of seals: effective medium theory and comparison with experiment
Seals are extremely useful devices to prevent fluid leakage. We present an
effective medium theory of the leak-rate of rubber seals, which is based on a
recently developed contact mechanics theory. We compare the theory with
experimental results for seals consisting of silicon rubber in contact with
sandpaper and sand-blasted PMMA surfaces.Comment: 8 pages, 11 figure
On the dependence of the leak-rate of seals on the skewness of the surface height probability distribution
Seals are extremely useful devices to prevent fluid leakage. We present
experimental result which show that the leak-rate of seals depend sensitively
on the skewness in the height probability distribution. The experimental data
are analyzed using the critical-junction theory. We show that using the
top-power spectrum result in good agreement between theory and experiment.Comment: 5 pages, 9 figure
Heat transfer between elastic solids with randomly rough surfaces
We study the heat transfer between elastic solids with randomly rough
surfaces. We include both the heat transfer from the area of real contact, and
the heat transfer between the surfaces in the noncontact regions. We apply a
recently developed contact mechanics theory, which accounts for the
hierarchical nature of the contact between solids with roughness on many
different length scales. For elastic contact, at the highest (atomic)
resolution the area of real contact typically consists of atomic (nanometer)
sized regions, and we discuss the implications of this for the heat transfer.
For solids with very smooth surfaces, as is typical in many modern engineering
applications, the interfacial separation in the non-contact regions will be
very small, and for this case we show the importance of the radiative heat
transfer associated with the evanescent electromagnetic waves which exist
outside of all bodies.Comment: 23 pages, 19 figure
Recommended from our members
NWA 6356: unequilibrated polymict ureilite
Polymict ureilite NWA 6356 has not suffered an intensive metamorphism and keeps the evidence of multistage carbon injections, reducing sulphuric metasomatism, and consists of feldspathic clasts and best preserved CM-like chondrite fragments
Leak-rate of seals: comparison of theory with experiment
Seals are extremely useful devices to prevent fluid leakage. We present
experimental results for the leak-rate of rubber seals, and compare the results
to a novel theory, which is based on percolation theory and a recently
developed contact mechanics theory. We find good agreement between theory and
experiment.Comment: 6 pages, 10 figure
Fluid flow at the interface between elastic solids with randomly rough surfaces
I study fluid flow at the interface between elastic solids with randomly
rough surfaces. I use the contact mechanics model of Persson to take into
account the elastic interaction between the solid walls and the Bruggeman
effective medium theory to account for the influence of the disorder on the
fluid flow. I calculate the flow tensor which determines the pressure flow
factor and, e.g., the leak-rate of static seals. I show how the perturbation
treatment of Tripp can be extended to arbitrary order in the ratio between the
root-mean-square roughness amplitude and the average interfacial surface
separation. I introduce a matrix D(Zeta), determined by the surface roughness
power spectrum, which can be used to describe the anisotropy of the surface at
any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta)
(generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure
- …