185 research outputs found

    Bargaining, Independence, and the Rationality of Fair Division

    Get PDF
    We consider two person bargaining games with independent preferences, with and without bilateral incomplete information. We show that, both in the ultimatum game and in the two-stage alternating-offers game, our equilibrium predictions are fully consistent with all robust experimental regularities which falsify the standard game theoretic model: occurrence of disagreements, disadvantageous counteroffers, and outcomes that come close to the equal split of the pie.BARGAINING ; GAMES

    Fractional order hereditariness of knee human ligament and tendon

    Get PDF
    Anterior Cruciate Ligament (ACL) is one of the four major ligaments in the knee, playing a critical role in stabilizing the joint. ACL is highly susceptible to injury, overall during sport activities, often precipitating catastrophic long-term joint outcomes. The ideal replacement graft for a torn ACL would restore native anatomy and function to the knee. Most commonly used autograft and allograft, including patellar tendon (P) and hamstring tendon (H) graft, or bioengineered synthetic grafts, may substantially alter the biomechanics of the knee, permitting a return to only moderate physical activities [1]. Main issues are the sub-optimal graft properties [2] and a still incomplete biomechanics characterization [1]. The goal of the present work is to fully characterize and compare the viscoelastic behavior of the ACL and natural/artificial grafts in order to highlight the differences that should be overcome to achieve a successful biomechanical performance and an ideal graft design

    Screen-Printed Biosensors for the Early Detection of Biomarkers Related to Alzheimer Disease: Preliminary Results

    Get PDF
    Abstract Alzheimer disease (AD), despite representing the most common type of dementia in elderly, is still lacking reliable methodologies for early diagnosis. A potential biomarker associated to AD development has been recently identified in the open isoform of p53, redox sensitive protein, currently quantified using a specific blood-based enzyme-linked immunosorbent assay (ELISA). In order to overcome ELISA limitations (level of detection, standardization and reliability), this study aimed to realize a low cost highly sensitive portable point-of-care (PoC) testing system based on screen printed electrochemical sensors (SPES). The study specifically reported the design of the platform, including the sensing probe and the electronic circuit devoted to the conditioning of the electric signal. Preliminary results were obtained from circuit testing by using controlled concentrations of electrolytic solutions and from an initial calibration stage by using Anodic Stripping Voltammetry (ASV) measurements. Future works will address the quantification of unknown concentration of unfolded p53 in peripheral blood samples, thus to validate the here-presented low cost, easy to use and highly precise platform

    Regulatory Pricing Rules to Neutralize Network Dominance

    Full text link

    Pinch Grip per SE Is Not an Occupational Risk Factor for the Musculoskeletal System: An Experimental Study on Field

    Get PDF
    Introduction: Some ergonomic evaluation methods define pinch grip as a risk factor independent of the exerted force. The present experimental study was performed with the main aim of objectively measuring the muscle engagement during the execution of pinch grip. Methods: the participants of the study were healthy workers occupationally involved in a high-intensity repetitive job related to the sorting of letters and small packages. Surface electromyography (sEMG) was used to study the activity of the abductor pollicis brevis and first dorsal interosseous fibers related to the execution of the required working tasks, while the force exerted during voluntary muscle contraction for pinch grip was measured by a portable acquisition system. The subjects were specifically asked to exert the maximum voluntary isometric contraction (MVIC) and further voluntary isometric contractions with a spontaneous force (SF) equal to 10%,20% and 50% of the MVIC; finally, the workers were asked to hold in pinch grip two types of envelopes, weighing 100 g and 500 g, respectively. Results: The force required to pinch 100 and 500 g envelopes by the fifteen subjects of the study corresponded to 4 and 5% MVIC, respectively. The corresponding sEMG average rectified values (ARV) were approximately 6% of that at MVIC for first dorsal interosseus (FDI) fibers and approximately 20-25% of MVIC for abductor pollicis brevis (ABP) fibers. Bivariate correlation analysis showed significant relationships between force at MVIC and FDI ARV at MCV. Conclusions: The obtained results demonstrate that muscle recruitment during pinch grip varies as a function of the SF: not only the position but also the exerted force should be considered when assessing the pinch grip as risk factor for biomechanical overload of the upper limb

    Quantifying the contribution of single joint kinematics to the overall ergonomic discomfort

    Get PDF
    Work-related musculoskeletal disorders (WMSDs) represent one of the major issues concerning the occupational safety and health of workers. Thus, a reliable evaluation of workers’ exposure to the risk factors that may contribute to WMSDs development is mandatory, above all, within an industrial context. At present, standard synthetic indices are widely used in this frame, presenting – however - several limitations due to poor reliability and time efficiency. The aim of this work was to investigate the contribution of the displacement quantified for each single joint during the execution of simple reaching tasks, to the overall discomfort of the worker evaluated by means of standard observational methods. Forty-five healthy volunteers were included in the analysis; each subject was asked to reach and rotate 2 spheres placed on a custom-made rack in standardized positions, i.e., above the head and one at floor level at centre side. Whole-body kinematics was acquired via a system based on wearable inertial measurement units. Standard ergonomic scales including RULA (Rapid Upper Limb Assessment), REBA (Rapid Entire Body Assessment), and MMGA (Method for Movement and Gesture Assessment), were assessed for each subject and each sphere position. Moreover, a quantitative index based on actual joint kinematics, i.e., W1 index, was computed for each joint angle involved in the task. Correlation analysis was performed for W1 relative to each joint with respect to RULA, REBA, and MMGA scores. Considering REBA and MMGA scores, the most comfortable reaching areas were the ones in which the sphere was positioned at the top; in contrast, the lowest positions evidenced the most increased discomfort indexes. The RULA did not result sensitive to the different positions, while REBA and MMGA seemed to be more influenced by the range of motion of the lower limb joint angles than the upper limb ones. This study underlines the necessity to focus on multiple potential contributors to WMSDs and underlines the importance of subject-specific approaches toward risk assessment by exploiting quantitative measurements and wearable technologies, which indeed represent key enabling approaches even in consideration of the novel “Industry 5.0” perspective

    Advanced microscopy analysis of the micro-nanoscale architecture of human menisci

    Get PDF
    The complex inhomogeneous architecture of the human meniscal tissue at the micro and nano scale in the absence of artefacts introduced by sample treatments has not yet been fully revealed. The knowledge of the internal structure organization is essential to understand the mechanical functionality of the meniscus and its relationship with the tissue’s complex structure. In this work, we investigated human meniscal tissue structure using up-to-date non-invasive imaging techniques, based on multiphoton fluorescence and quantitative second harmonic generation microscopy complemented with Environmental Scanning Electron Microscopy measurements. Observations on 50 meniscal samples extracted from 6 human menisci (3 lateral and 3 medial) revealed fundamental features of structural morphology and allowed us to quantitatively describe the 3D organisation of elastin and collagen fibres bundles. 3D regular waves of collagen bundles are arranged in “honeycomb-like” cells that are comprised of pores surrounded by the collagen and elastin network at the micro-scale. This type of arrangement propagates from macro to the nanoscale

    Third time lucky

    No full text
    • …
    corecore