52,280 research outputs found

    Glacial Processes and Their Relationship to Streamflow Flute Glacier, Alaska

    Get PDF
    Flute Glacier is located at the head of the South Fork of Eagle River, Alaska, about twenty air-miles east northeast of Anchorage. It is a small north-facing glacier, approximately two miles long and half a mile wide, situated in a deep glacial valley (see Figure 1). Elevations on the glacier range from 3,500 feet at the terminous to 5,800 feet at the top of the accumulation area. Water from Flute Glacier becomes the South Fork of Eagle River, draining about 32 square miles of area compared to a 192 square mile drainage basin for Eagle River. Limited discharge measurements made during October 1968 suggest that the South Fork contributes about 20% of the water flowing down Eagle River. Glacial meltwater forms an important percentage of the waters of the Eagle River system. Glaciers feeding the main Eagle River are large, complex and difficult to study. Flute Glacier, relatively small and of simple plan, was selected for study because of its small size and proximity to the metropolitan area of Anchorage. Water from the Eagle River system is presently included in the plans for future water supply for Anchorage. The Eagle River valley up to the 500 ft contour is a federal power reserve. The climate of the area surrounding Flute Glacier is alpine with cool temperatures and higher than average precipitation for the area. All the glacier is above treeline so no plant life is obvious. Mountain sheep inhabit the sharp alpine peaks surrounding the glacier.The work upon which this report is based was supported by funds (Project A-021- ALAS) provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources Act of 1964 as amended

    Beyond Bathsheba: Managing Ethical Climates Through Pragmatic Ethics

    Get PDF
    This paper explores the puzzling nature of leader behavior in order to understand the conditions that encourage unethical decision-making. Building on the extant literature of pragmatic ethics, I explore how leaders can increase the quality of ethical decision-making within their organizations by understanding the incentives of rational choice. I have developed a rational choice-based ethical decision-making model to understand the incentives behind ethical leader behavior and find that ethical behavior is likely to be rational as long as audience costs remain higher than the savings benefits incurred by unethical behavior. I conclude with analysis of how the ethical rational model compares to other prominent theories that explain unethical leader behavior and propose that the probable outcomes derived from my model better explain bad leader behavior than competing control-oriented models. The results of this inquiry underscore the transactional and practical characteristics of leadership as a tool to help leaders manage their ethical climates, improve business practices and management policies, understand the nature of individual incentives, and capture transactional components of leader behavior

    Quantifying parameters for Bayesian prior assumptions when estimating the probability of failure of software

    Get PDF
    Software reliability has become increasingly important, especially in life-critical situations. The ability to measure the results of testing and to quantify software reliability is needed. If this is accomplished, a certain minimum amount of reliability for a piece of software can be specified, and testing and/or other analysis may be done until that minimum number has been attained. There are many models for estimating software reliability. The accuracy of these models has been challenged and many revisions for the models and recalibration techniques have been devised. Of particular interest is the method of estimating the probability of failure of software when no failures have yet occurred in its current version as described by Miller. This model uses black box testing with formulae based on Bayesian estimation. The focus is on three interrelated issues: estimating the probability of failure when testing has revealed no errors; modifying this estimation when the input use distribution does not match the test distribution; and combining the results from random testing with other relevant information to obtain a possibly more accurate estimate of the probability of failure. Obtaining relevant information about the software and combining the results for a better estimate for the Miller model are discussed

    Overlay Protection Against Link Failures Using Network Coding

    Get PDF
    This paper introduces a network coding-based protection scheme against single and multiple link failures. The proposed strategy ensures that in a connection, each node receives two copies of the same data unit: one copy on the working circuit, and a second copy that can be extracted from linear combinations of data units transmitted on a shared protection path. This guarantees instantaneous recovery of data units upon the failure of a working circuit. The strategy can be implemented at an overlay layer, which makes its deployment simple and scalable. While the proposed strategy is similar in spirit to the work of Kamal '07 & '10, there are significant differences. In particular, it provides protection against multiple link failures. The new scheme is simpler, less expensive, and does not require the synchronization required by the original scheme. The sharing of the protection circuit by a number of connections is the key to the reduction of the cost of protection. The paper also conducts a comparison of the cost of the proposed scheme to the 1+1 and shared backup path protection (SBPP) strategies, and establishes the benefits of our strategy.Comment: 14 pages, 10 figures, accepted by IEEE/ACM Transactions on Networkin

    Study of filtration mechanics and sampling techniques Annual technical summary report, phase 4, 1967-1968

    Get PDF
    Filtration mechanics and fluid contamination control in hydraulic system

    Electron and proton absorption calculations for a graphite/epoxy composite model

    Get PDF
    The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit

    Low-energy electron effects on tensile modulus and infrared transmission properties of a polypyromellitimide film

    Get PDF
    Infrared (IR) spectroscopy and tensile modulus testing were used to evaluate the importance of experimental procedure on changes in properties of pyromellitic dianhydride-p,p prime-oxydianiline film exposed to electron radiation. The radiation exposures were accelerated, approximate equivalents to the total dose expected for a 30 year mission in geosynchronous Earth orbit. The change in the tensile modulus depends more on the dose rate and the time interval between exposure and testing than on total dose. The IR data vary with both total dose and dose rate. A threshold dose rate exists below which reversible radiation effects on the IR spectra occur. Above the threshold dose rate, irreversible effects occur with the appearance of a new band. Post-irradiation and in situ IR absorption bands are significantly different. It is suggested that the electron radiation induced metastable, excites molecular states

    Moisture diffusion parameter characteristics for epoxy composites and neat resins

    Get PDF
    The moisture absorption characteristics of two graphite/epoxy composites and their corresponding cured neat resins were studied in high humidity and water immersion environments at elevated temperatures. Moisture absorption parameters, such as equilibrium moisture content and diffusion coefficient derived from data taken on samples exposed to high humidity and water soak environments, were compared. Composite swelling in a water immersion environment was measured. Tensile strengths of cured neat resin were measured as a function of their equilibrium moisture content after exposure to different moisture environments. The effects of intermittent moderate tensile loads on the moisture absorption parameters of composite and cured neat resin samples were determined

    Spectroscopic analysis of radiation-generated changes in tensile properties of a polyetherimide film

    Get PDF
    The effects of electron radiation on Ultem, a polyetherimide were studied for doses from 2 x 10 to the 9th power to 6 x 10 to the 9th power rad. Specimens were studied for tensile property testing and for electron paramagnetic resonance and infrared spectroscopic measurements of molecular structure. A Faraday cup design and a method for remote temperature measurement were developed. The spectroscopic data show that radiation caused dehydrogenation of methyl groups, rupture of main-chain ether linkage, and opening of imide rings, all to form radicals and indicate that the so-formed atomic hydrogen attached to phenyl radicals, but not to phenoxyl radicals, which would have formed hydroxyls. The observed decays of the radiation-generated phenoxyl, gem-dimethyl, and carbonyl radicals were interpreted as a combining of the radicals to form crosslinking. This crosslinking is the probable cause of the major reduction in the elongation of the tensile specimens after irradiation. Subsequent classical solubility tests indicate that the irradiation caused massive crosslinking
    corecore