4 research outputs found

    Equation of state of non-relativistic matter from automated perturbation theory and complex Langevin

    Get PDF
    We calculate the pressure and density of polarized non-relativistic systems of two-component fermions coupled via a contact interaction at finite temperature. For the unpolarized one-dimensional system with an attractive interaction, we perform a thirdorder lattice perturbation theory calculation and assess its convergence by comparing with hybrid Monte Carlo. In that regime, we also demonstrate agreement with real Langevin. For the repulsive unpolarized one-dimensional system, where there is a so-called complex phase problem, we present lattice perturbation theory as well as complex Langevin calculations. For our studies, we employ a Hubbard-Stratonovich transformation to decouple the interaction and automate the application of Wick's theorem for perturbative calculations, which generates the diagrammatic expansion at any order. We find excellent agreement between the results from our perturbative calculations and stochastic studies in the weakly interacting regime. In addition, we show predictions for the strong coupling regime as well as for the polarized one-dimensional system. Finally, we show a first estimate for the equation of state in three dimensions where we focus on the polarized unitary Fermi gas

    Polarized fermions in one dimension: Density and polarization from complex Langevin calculations, perturbation theory, and the virial expansion

    Get PDF
    We calculate the finite-temperature density and polarization equations of state of one-dimensional fermions with a zero-range interaction, considering both attractive and repulsive regimes. In the path-integral formulation of the grand-canonical ensemble, a finite chemical potential asymmetry makes these systems intractable for standard Monte Carlo approaches due to the sign problem. Although the latter can be removed in one spatial dimension, we consider the one-dimensional situation in the present work to provide an efficient test for studies of the higher-dimensional counterparts. To that end, we use the complex Langevin approach, which we compare here with other approaches: imaginary-polarization studies, third-order perturbation theory, and the third-order virial expansion. We find very good qualitative and quantitative agreement across all methods in the regimes studied, which supports their validity

    Finite-Temperature Equation of State of Polarized Fermions at Unitarity

    Get PDF
    We study in a nonperturbative fashion the thermodynamics of a unitary Fermi gas over a wide range of temperatures and spin polarizations. To this end, we use the complex Langevin method, a first principles approach for strongly coupled systems. Specifically, we show results for the density equation of state, the magnetization, and the magnetic susceptibility. At zero polarization, our results agree well with state-of-the-art results for the density equation of state and with experimental data. At finite polarization and low fugacity, our results are in excellent agreement with the third-order virial expansion. In the fully quantum mechanical regime close to the balanced limit, the critical temperature for superfluidity appears to depend only weakly on the spin polarization

    Complex Langevin and other approaches to the sign problem in quantum many-body physics

    Get PDF
    We review the theory and applications of complex stochastic quantization to the quantum many-body problem. Along the way, we present a brief overview of a number of ideas that either ameliorate or in some cases altogether solve the sign problem, including the classic reweighting method, alternative Hubbard–Stratonovich transformations, dual variables (for bosons and fermions), Majorana fermions, density-of-states methods, imaginary asymmetry approaches, and Lefschetz thimbles. We discuss some aspects of the mathematical underpinnings of conventional stochastic quantization, provide a few pedagogical examples, and summarize open challenges and practical solutions for the complex case. Finally, we review the recent applications of complex Langevin to quantum field theory in relativistic and nonrelativistic quantum matter, with an emphasis on the nonrelativistic case
    corecore