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We study in a nonperturbative fashion the thermodynamics of a unitary Fermi gas over a wide range of
temperatures and spin polarizations. To this end, we use the complex Langevin method, a first principles
approach for strongly coupled systems. Specifically, we show results for the density equation of state, the
magnetization, and the magnetic susceptibility. At zero polarization, our results agree well with state-of-
the-art results for the density equation of state and with experimental data. At finite polarization and low
fugacity, our results are in excellent agreement with the third-order virial expansion. In the fully quantum
mechanical regime close to the balanced limit, the critical temperature for superfluidity appears to depend
only weakly on the spin polarization.
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Introduction.—Without a doubt, one of the most
intensely studied systems in recent years, at the interface
of atomic, nuclear, and high-energy physics, is that of two-
component fermions in the scale-invariant limit of infinite
s-wave scattering length and effectively zero interaction
range: the unitary Fermi gas (UFG) [1–4]. This system is
now routinely realized to an excellent approximation with
ultracold alkali atoms in several laboratories around the
world (see Refs. [5–9] for reviews of theory and experi-
ment) and simultaneously (though only approximately) in
dilute neutron matter in neutron star crusts [10–12].
Because of the lack of scales characterizing the interaction
between the fermions, all physical quantities at unitarity are
fully determined by universal numbers in units of the
fermion density [13], that being the only scale of the
system. This property renders the system relevant for such
disparate energy scales as those of atomic and astrophysics
and has, moreover, been shown to reflect a nonrelativistic
type of conformal invariance [14–17].
A peculiarity of the UFG is that it lies in the middle of the

crossover between Bardeen-Cooper-Schrieffer superfluidity
and Bose-Einstein condensation, where the appearance of
pseudogap phenomena and preformed Cooper pairs at high
temperature appears possible [18–22]. This suggests in-
triguing connections to high-Tc superconductors. Because
of such relevance of the UFG for various fields, the past two
decades have seenuncounted studies exploring the properties
of this crossover in the unpolarized limit, both theoretically
and experimentally [4]. Finite spin polarizations are even
more challenging to tackle (see, e.g., [23–27] for reviews and
[28–42] for experimentalwork) and therefore this case leaves
uswithmany puzzles. At low temperatures, when the system

is superfluid, a large enough polarization will destroy
superfluidity [43,44]. Precisely how that happens, and what
other exotic superfluid phases may be traversed in the
process, has remained a controversial topic not only for
atomic superfluids but also for their quantum chromody-
namics (QCD) counterparts, namely, color superconductors
[23]. Part of the challenge in answering such questions is that
the UFG (not unlike QCD and many other systems) is a
strongly correlated many-body system lacking a small
parameter and therefore can only be tackled with non-
perturbativemethods. However, nonperturbative (semi-)ana-
lytic studies of such systems rely on some ansatz and
conventionalMonte Carlo (MC) calculations are unavailable
at finite polarization due to the infamous sign problem.
In this Letter, we explore the spin polarized UFG at finite

temperature, providing some of the essential measurable
properties that characterize its universal thermodynamics,
namely, the density and magnetic equation of state (EOS).
From those, differentiation yields static response functions
such as the compressibility and magnetic susceptibility,
while integration yields the pressure. To determine those
equations of state, we implement a complex version of
stochastic quantizationknownas the complexLangevin (CL)
method [45], which we have developed and tested for spin-
and mass-imbalanced one-dimensional nonrelativistic sys-
tems [46], including successful comparisons with exact
answers in the ground state [47] and at finite temperature
[48]. In the present Letter, we further validate our approach
by comparing our results with the virial expansion and state-
of-the-art MC calculations at zero polarization, eventually
obtaining ab initio predictions for thermodynamic quantities
of the UFG over wide temperature and polarization ranges.
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Hamiltonian and method.—Fermions in the unitary limit
are governed by a Hamiltonian with a nonrelativistic
dispersion relation and a zero-range interaction,

Ĥ ¼
Z

d3xψ̂†
sðxÞ

�
−
ℏ2∇2

2m

�
ψ̂ sðxÞ − g

Z
d3xn̂↑ðxÞn̂↓ðxÞ;

where ψ̂†
s , ψ̂ s are the fermion creation and annihilation

operators, respectively, for spin projection s ¼ ↑, ↓
(summed over in the kinetic term), and the corresponding
coordinate-space densities are n̂sðxÞ ¼ ψ̂†

sðxÞψ̂ sðxÞ.
Although we have written ℏ and the fermion mass m
explicitly, we take ℏ ¼ kB ¼ m ¼ 1 from this point on. The
grand-canonical partition function then reads

Z ¼ Tr exp½−βðĤ − μ↑N̂↑ − μ↓N̂↓Þ�; ð1Þ

where μs is the chemical potential for spin s ¼ ↑, ↓
particles, N̂s is the corresponding particle number operator,
and β−1 ¼ T is the temperature. To study the strongly
coupled many-body problem described by Z, we put the
system on a spacetime lattice (via a Suzuki-Trotter fac-
torization) and introduce a path integral representation of
the interaction by way of an auxiliary-field Hubbard-
Stratonovich (HS) transformation. As those steps are rather
standard (see, e.g., [49]), we only state the result,

Z ¼
Z

Dσe−S½σ�; ð2Þ

where S½σ� ¼ − ln detðM↑½σ�M↓½σ�Þ is the action for the
(real-valued) HS field σ and contains all the input param-
eters mentioned above. The details of the shape of the real-
valued Fermi matrix Ms½σ� can be found, for instance, in
Ref. [49]. It is important to note here, however, that M↑½σ�
includes μ↑ and not μ↓, and vice versa for M↓½σ�; i.e., we
use a HS transformation that decouples the interaction in
the density channel. As a result, in the unpolarized limit
μ↑ ¼ μ↓, the fermion determinant is positive and the action
is real, such that e−S½σ� ≥ 0 can be used as a probability
measure in a Metropolis-based MC calculation; i.e., there is
no sign problem in that case. On the other hand, for the
polarized case μ↑ ≠ μ↓, such that M↑½σ� ≠ M↓½σ�, and
therefore S can be complex, which hinders the use of
probabilistic MC approaches.
The aforementioned sign problem is well known and

pervades MC approaches across all of physics [50],
including high-Tc superconductors (due to strong repulsive
interaction away from half filling) [51], nuclear structure
(strong repulsive core, finite spin-isospin polarization)
[52,53], and QCD (at finite quark density) [54–57], to
name a few. Recently, some progress has been made in
understanding the sign problem as well as in its treatment
with complex-plane methods such as the CL approach [45]
and Lefschetz thimbles [58–62]. In essence, the CL

algorithm implements an extension of conventional
Langevin-based stochastic quantization [63–65] to the case
of complex-valued actions. As the Langevin equation uses
S to evolve σ in its configuration space, a complex S
naturally requires complexifying the HS field σ. Further
details on the algorithm and our implementation can be
found in Refs. [46,48,66–68]. Thus far, we have success-
fully applied such an approach to nonrelativistic fermions
in 1D in a variety of situations, such as finite temperature
and polarization [48] and mass asymmetry at zero temper-
ature [47]. Those studies yielded an optimistic outlook for
their higher-dimensional counterparts, i.e., this Letter. Still,
a word of caution is in order regarding this method. While
conventional Metropolis-based methods are on solid math-
ematical footing at vanishing polarization, the CL approach
remains a method under construction. A discussion of the
issues is beyond the scope of this Letter, but these are being
investigated by us and other groups in the lattice QCD area
(see, e.g., [69–73]). We emphasize that the calculations
presented below display the same run-time features as our
prior 1D studies which, together with the self-consistency
of the results and the agreement with other methods in the
balanced case and the virial expansion at finite polarization,
gives some confidence on the reliability of the answers.
Results.—To characterize the universal thermodynamics

of the polarized UFG, we computed the density n, mag-
netization m, and normalized magnetic susceptibility
χ̄M ¼ ∂m̄=∂ðβhÞ with m̄ ¼ m=nðβh ¼ 0Þ as functions of
the dimensionless chemical potential βμ ¼ βðμ↑ þ μ↓Þ=2,
and the dimensionless chemical potential difference
βh ¼ βðμ↑ − μ↓Þ=2. The path integral form of the thermal
expectation values of n and m is obtained by differentiating
lnZ with respect to μ and h. The magnetic susceptibility,
which becomes the Pauli susceptibility in the noninteract-
ing case, is then derived from the magnetic EOS. To
evaluate such path integrals, we discretized spacetime into
a (3þ 1)-dimensional lattice of spatial volume V ¼ L3,
with L ¼ lNx, Nx ¼ 7, 9, 11, lattice spacing l ¼ 1, and
periodic boundary conditions. For the temporal direction,
we chose Nτ ¼ 160, with temporal lattice spacing
τ ¼ 0.05l2, and antiperiodic boundary conditions for the
fermion fields. Note that, while we varied the spatial extent
of the box in our calculations, we kept β ¼ τNτ ¼ 8.0
fixed. Our choice for the latter determines the thermal de
Broglie wavelength λT ¼ ffiffiffiffiffiffiffiffi

2πβ
p

≃ 7.0 being consistent
with the continuum-limit window 1 ¼ l ≪ ðλT; λFÞ ≪
L ¼ Nxl, where λF ¼ 2π=kF is the Fermi wavelength,
and kF ¼ ð3π2nÞ13 is the Fermi momentum at the given
density. Thus, the computational challenge, besides the
sign problem, is that of opening that window of scales by
making Nx and β as large as possible, in that order, and
staying in a dilute regime to suppress artifacts associated
with the ultraviolet energy cutoff imposed by the lattice.
Note that the reliability of calculations based on our present
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set of spacetime lattice parameters has been analyzed in
detail in the past [74–79].
The bare coupling constant g in the Hamilton operator

was fixed to the two-body bound-state threshold using
Lüscher’s formula [80,81], as in Ref. [82]. Under those
conditions, we varied the asymmetry parameter over the
range βh ∈ ½0.0; 2.0� (corresponding to T ≥ h=2), and the
chemical potential in the interval βμ ∈ ½−3.0; 2.5�, covering
the semiclassical regime (at low fugacities zs ¼ eβμs , where
the virial expansion is valid) to the fully quantum mechani-
cal regime at large positive βμ, including a small region
below the superfluid transition temperature for the unpo-
larized system, at ðβμÞc ≃ 2.5 [83–86].
To validate our results, we use prior lattice MC results

[82], diagrammatic MC results [87], and MIT experimental
[83,87] results obtained in the unpolarized limit (first
measured in [88,89] and computed with MC calculations
in [90]), as well as the third-order virial expansion at finite
polarization, which reads

n − n0 ¼
Q1

V

�
2Δb2z↑z↓ þ 3

Δb3
2

ðz2↑z↓ þ z↑z2↓Þ
�
; ð3Þ

m −m0 ¼
Q1

V
½Δb3ðz2↑z↓ − z↑z2↓Þ�; ð4Þ

where Q1 is the two-species single-particle partition func-
tion, V is the spatial volume, and in the continuum
Q1=V → 2=λ3T . The interacting total density is given by
n, n0 ¼ n0ðβμ; βhÞ is the noninteracting total density, m ¼
n↑ − n↓ is the magnetization of the interacting system, and
m0 ¼ m0ðβμ; βhÞ is the associated noninteracting magneti-
zation. The above coefficients are Δbj ¼ bj − b0j , where
b0j ¼ ð−1Þj−1j−5=2 are the virial coefficients of the non-

interacting gas, and b2 ¼ 3=ð4 ffiffiffi
2

p Þ and b3 ≈ −0.29095
(see, e.g., Refs. [36,91]) are the coefficients of the unitary
gas. The coefficient b4 is also known for the unpolarized
gas: b4 ¼ 0.078ð18Þ (see Ref. [92]), but two separate
coefficients are needed at that order in the polarized case.
For the parameter region studied, we find that our

βh ¼ 0 results are in excellent agreement with the third-
order virial expansion for βμ≲ −1; see Fig. 1 for the
density EOS and the isothermal compressibility
κ ¼ ð1=nÞð∂n=∂PÞjT , with P being the pressure and n
being the total density. Moreover, our results reproduce
closely the existing results from lattice MC calculations
[82], diagrammatic MC calculations [87], and the MIT
experiments [83,87] in the unpolarized limit, up to
βμ ¼ 2.0, which reflects the smallness of the systematic
effects in that parameter range. The smoothness of the
curve connecting the data points shows that statistical
effects are also well controlled and are roughly the size
of the symbols. For βμ > 2.0, on the other hand, systematic
effects in all state-of-the-art calculations, namely, finite-
range and finite-volume effects, become more important

and underlie the observed deviation from the MIT mea-
surements at low temperature, i.e., close to and below the
superfluid phase transition. Still, some indication of the
appearance of the phase transition is visible in our present
data as a sharp peak in the compressibility close to
P=P0 ≈ 0.5, in accordance with experiment.
Given the excellent agreement of our results for the

balanced UFG with existing theoretical and experimental
data above the superfluid phase transition, we now proceed
to the polarized case. In Fig. 2, we present our main results:
density EOS normalized by the density of the noninteract-
ing gas n0ðβμ; βh ¼ 0Þ as a function of βμ (left panel) for
βh ¼ 0; 0.4;…; 2.0, magnetization (central panel) normal-
ized by the interacting density of the balanced system
nðβμ; βh ¼ 0Þ, as well as magnetic susceptibility (right

FIG. 1. (Top) Density of the balanced UFG obtained by CL
(blue squares), in units of the noninteracting unpolarized density
n0 as a function of the dimensionless average chemical potential
βμ. Also shown, third-order virial expansion (dashed line),
experimental results of Refs. [83,87] (red circles), and theoretical
results obtained by bold diagrammatic Monte Carlo (BDMC)
calculations [87] (dark diamonds) and determinantal hybrid
Monte Carlo (DHMC) calculations [82] (light diamonds). (Bot-
tom) Compressibility κ as derived from the density EOS (see
Supplemental Material [93]) in units of its noninteracting ground-
state value κ0, as a function of the pressure P normalized by the
noninteracting ground-state pressure P0 (blue squares), compared
to experimental values [83] (red circles) and third-order virial
expansion (dashed line). Statistical uncertainties for the CL
results are on the order of the symbol sizes. Shaded areas
indicate the superfluid phase.
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panel) as a function of the asymmetry parameter βh
for βμ ¼ −3;−2;…; 2.
For the density and magnetization equations of state, we

again find excellent agreement with the virial expansion for
sufficiently negative βμ. However, we also observe that the
regime of validity of the expansion appears to shrink as βh
is increased, see left panel of Fig. 2. Indeed, for βh ¼ 2.0,
the third-order virial expansion clearly deviates from our
nonperturbative results for βμ≳ −1, as opposed to the
balanced case discussed above.
As βμ is increased, the equations of state obtained for

different values of βh approach the EOS of the balanced
system. This is not unexpected, as the relative asymmetry
h=μ decreases when βμ is increased at fixed βh. Of course,
the approach to the balanced EOS should happen at
progressively larger values of βμ when βh is increased,
which is indeed the case and can be seen in the left panel of
Fig. 2. As the balanced system is known to be governed by
a superfluid ground state above a critical value of βμ, this
observation also suggests that the critical temperature
decreases with increasing spin asymmetry, in line with
(semi-)analytic studies [25,26,84,85,94,95] and lattice MC
studies of a slightly spin-imbalanced UFG using reweight-
ing techniques [96].
Our discussion of the density EOS at finite spin

asymmetry carries over to the magnetization m (Fig. 2,
center). Similar to the density, the results for m match the
third-order virial expansion for large negative values of βμ.
As βμ is increased, however, our nonperturbative results
clearly start to deviate from the virial expansion. For
βμ ¼ 2.0, i.e., close to the critical value of the balanced
system, we observe that m only shows a very mild
dependence on βh. As m is expected to be small in the
superfluid phase (the response to h being suppressed by the

pairing gap; see, e.g., [97]), our results suggest that the
system remains close to the superfluid phase for βh ≲ 2,
provided that βμ is fixed close to its critical value ðβμÞc ≃
2.5 for the balanced case. Sufficiently below ðβμÞc, i.e., at
sufficiently high temperature, the system can easily
“magnetize” by increasing βh.
To supplement our discussion of magnetic properties

of the UFG, we also show results for the magnetic sus-
ceptibility χ̄M, which measures the response under a
variation of the spin asymmetry (Fig. 2, right panel). In
the noninteracting gas at low effective magnetic field βh,
the susceptibility is well approximated by the field-
independent Pauli susceptibility. For negative βμ, corre-
sponding to the very dilute limit, our results for χ̄M of the
UFG approach those for the free Fermi gas. Interestingly,
even for βμ close the critical point, the functional form of
the susceptibility of the interacting system is still very
similar to that of the free Fermi gas, albeit rescaled by a
βμ-dependent factor. The latter is shown in the inset in the
right panel of Fig. 2 at βh ¼ 0.4.
Let us finally comment on the dependence of the

superfluid critical temperature Tc on βh. As mentioned
above, all of our results display a rather mild dependence
on βh for βμ≳ 2.0, which suggests a rather mild depend-
ence of Tc as well, at least in the range 0 ≤ βh ∼ 2.0. This
observation is also supported by a computation of the
compressibility: as we increase βh, we only observe a very
slight shift of the maximum to lower temperatures com-
pared to the balanced case (see Supplemental Material
[93]). This shift appears to be smaller than in (semi-)
analytic studies [25,26,84,85,94,95]. However, further
work is needed to resolve this dependence quantitatively.
Summary and conclusions.—We carried out a nonper-

turbative characterization of the density and magnetization

FIG. 2. (Left) Density of the UFG in units of the noninteracting density from bottom to top: βh ¼ 0 (circles), 0.4 (octagons), 0.8
(hexagons), 1.2 (pentagons), 1.6 (squares), 2.0 (triangles), compared to the third-order virial expansion (dashed lines). Colors encode
fixed values of βμ shown in all panels. (Center) Magnetization in units of the interacting density for the balanced system as a function of
βh for several values of βμ. For βμ ≤ −1.0, third-order virial expansion is shown with dashed lines. (Right) Dimensionless magnetic
susceptibility χ̄M as a function of βh (symbols) compared to the corresponding susceptibility of the free Fermi gas χ̄0M (dotted lines) at
equal chemical potential and asymmetry (color and shape coding as in other panels). (Inset) Ratio χ̄M=χ̄0M as a function of βμ
at βh ¼ 0.4.
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EOS of the UFG at finite temperature. To that end, we
implemented a finite-temperature stochastic lattice
approach that addresses the sign problem by going to
the complex plane; i.e., we used the complex Langevin
approach and presented our results as a function of βμ and
βh. We emphasize that those results are experimentally
testable predictions [98] for universal properties of quan-
tum many-body physics in the unitary limit, as realized, in
particular, with ultracold gases. In the unpolarized case, we
recover state-of-the-art results. At finite polarization, our
answers agree with the third-order virial expansion for
βμ≲ −2.0, where the expansion is expected to be valid. As
in our 1D studies [48], however, the expansion deteriorates
as βh is increased. For increasing βμ, we find that the
density EOS at finite asymmetry approaches the EOS of the
balanced system. That approach is “delayed” when βh is
increased, suggesting a decrease of the critical temperature
associated with the superfluid phase transition; this is as
expected, since h tends to facilitate Cooper pair breaking.
Our results for the magnetization support this interpretation
and suggest a mild βh dependence even up to βh ¼ 2.0.
The present Letter does not only set the stage for future
ab initio studies of this dependence but also of key features
in the low-temperature regime, such as phase separation
associated with the Chandrasekhar-Clogston limit, which
has already attracted tremendous attention for many years
now, both from the experimental [28–30,36,37,99] and
theoretical side (see, e.g., Refs. [84,100–106]).
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