190 research outputs found

    Intercalating cobalt between graphene and iridium (111): a spatially-dependent kinetics from the edges

    Full text link
    Using low-energy electron microscopy, we image in real time the intercalation of a cobalt monolayer between graphene and the (111) surface of iridium. Our measurements reveal that the edges of a graphene flake represent an energy barrier to intercalation. Based on a simple description of the growth kinetics, we estimate this energy barrier and find small, but substantial, local variations. These local variations suggest a possible influence of the graphene orientation with respect to its substrate and of the graphene edge termination on the energy value of the barrier height. Besides, our measurements show that intercalated cobalt is energetically more favorable than cobalt on bare iridium, indicating a surfactant role of graphene

    Nano-oscillator-based classification with a machine learning-compatible architecture

    Full text link
    Pattern classification architectures leveraging the physics of coupled nano-oscillators have been demonstrated as promising alternative computing approaches, but lack effective learning algorithms. In this work, we propose a nano-oscillator based classification architecture where the natural frequencies of the oscillators are learned linear combinations of the inputs, and define an offline learning algorithm based on gradient back-propagation. Our results show significant classification improvements over a related approach with online learning. We also compare our architecture with a standard neural network on a simple machine learning case, which suggests that our approach is economical in terms of numbers of adjustable parameters. The introduced architecture is also compatible with existing nano-technologies: the architecture does not require changes in the coupling between nano-oscillators, and it is tolerant to oscillator phase noise

    Improved spectral stability in spin transfer nano-oscillators: single vortex versus coupled vortices dynamics

    Get PDF
    We perform a comparative study of spin transfer induced excitation of the gyrotropic motion of a vortex core with either uniform or vortex spin polarizers. The microwave output voltage associated with the vortex dynamics, detected in both cases, displays a strong reduction of phase fluctuations in the case of the vortex polarizer, with a decrease of the peak linewidth by one order of magnitude down to 200kHz at zero field. A thorough study of rf emission features for the different accessible vortex configurations shows that this improvement is related to the excitation of coupled vortex dynamics by spin transfer torques

    Dynamique par transfert de spin et synchronisation d'oscillateurs couplés à base de vortex magnétiques

    Get PDF
    Le sujet de cette thèse concerne la dynamique auto-entretenue excitée par transfert de spin de vortex couplés, dans des structures de type nano-piliers vannes de spin (Py/Cu/Py). Un premier objectif a été de comprendre les processus de transport polarisé en spin et de transfert de spin associés à des configurations d aimantation fortement non-homogènes. Cette étude a permis d identifier et ainsi de précisément contrôler les configurations magnétiques à base de vortex, et en particulier d observer l influence du transfert de spin sur les mécanismes de renversement du cœur de vortex. En combinant des calculs analytiques et des simulations micro-magnétiques, nous avons également pu déterminer les conditions sur les paramètres relatifs des deux vortex (chiralités et polarités) pour obtenir des oscillations gyrotropiques couplées auto-entretenues de deux vortex dans un pilier unique. Un cas très intéressant est prévu pour les piliers de plus grands diamètres (typiquement supérieurs à 200nm) pour lesquels le courant critique est réduit potentiellement à zéro. Les résultats expérimentaux confirment les prédictions sur l existence d une dynamique couplée de vortex, avec des largeurs de raies atteignant 200kHz, un record à champ nul (soit un facteur de qualité Q 5000, un ordre de grandeur plus grand que pour les auto-oscillations de vortex unique) et diminuant même jusqu à 50kHz sous champ extérieur. Un second objectif de ce travail a été l étude de la synchronisation de deux auto-oscillateurs à transfert de spin à base de vortex. Nous avons démontré que le verrouillage des phases par couplage dipolaire de deux oscillateurs identiques peut être théoriquement obtenu indépendamment des paramètres des deux vortex. Toutefois un couplage trois fois plus important est prévu dans le cas de vortex de polarités opposées. Du point de vue expérimental, des premiers résultats ont permis de démontrer une faculté de synchronisation de deux oscillateurs présentant un écart en fréquence atteignant jusqu'à 10% de leurs fréquences d'auto-oscillation. Ce travail de thèse, qui s inscrit dans l effort de recherche mené pour améliorer les performances rf des nano-oscillateurs à transfert de spin, a permis d illustrer que l excitation de modes d aimantations couplées est une voie à poursuivre dans le but d aboutir à des largeurs de raies de plus en plus faibles.My PhD work is dedicated to the spin transfer induced self-sustained dynamics of two coupled vortices, in nano-pillars spin-valves structures (Py/Cu/Py). A first objective was to understand the spin-polarized transport processes as well as spin transfer mechanisms associated to highly non-homogeneous magnetic configurations. This study allows me to identify and then precisely tune the vortex based magnetic configurations, and notably to observe the influence of spin transfer on reversal mechanisms of the vortex core. Combining analytical calculations and micro-magnetic simulations, we determine the conditions on relative parameters for the two vortices (chiralities and polarities) necessary to obtain self-sustained gyrotropic oscillations of the coupled vortices in a single pillar. A very interesting case is predicted for the pillars with larger diameters (typically over 200nm) for which the critical current is reduced to zero. The experimental results confirm the predictions that a coupled dynamics exists with linewidths as narrow as 200kHz, that is a record at zero field (corresponding to a quality factor Q 5000, an order of magnitude over the self-sustained oscillations of a single vortex), and even down to 50kHz under external field.A second objective was to investigate the synchronization of two vortex based spin transfer oscillators. We demonstrate theoretically that the phase locking through dipolar coupling of two identical oscillators can be achieved for any parameters of the two vortex. However, the coupling is three times stronger when vortices have opposite core polarities. From an experimental point of view, the synchronization capability for two oscillators having a frequency mismatch reaching up to 10 % of the auto-oscillation frequency has been demonstrated. This work, being part of the research effort made to improve the rf properties of spin transfer nano-oscillators emphasizes how the excitation of coupled magnetizations modes is important to reach lower and lower linewidths.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Nonlinear behavior and mode coupling in spin transfer nano-oscillators

    Full text link
    By investigating thoroughly the tunable behavior of coupled modes, we highlight how it provides new means to handle the properties of spin transfer nano-oscillators. We first demonstrate that the main features of the microwave signal associated with coupled vortex dynamics i.e. frequency, spectral coherence, critical current, mode localization, depends drastically on the relative vortex core polarities. Secondly we report a large reduction of the nonlinear linewidth broadening obtained by changing the effective damping through the control of the core configuration. Such a level of control on the nonlinear behavior reinforces our choice to exploit the microwave properties of collective modes for applications of spintronic devices in novel generation of integrated telecommunication devices

    Fragmentation of magnetism in artificial kagome dipolar spin ice

    Full text link
    Geometrical frustration in magnetic materials often gives rise to exotic, low-temperature states of matter, like the ones observed in spin ices. Here we report the imaging of the magnetic states of a thermally-active artificial magnetic ice that reveal the fingerprints of a spin fragmentation process. This fragmentation corresponds to a splitting of the magnetic degree of freedom into two channels and is evidenced in both real and reciprocal space. Furthermore, the internal organization of both channels is interpreted within the framework of a hybrid spin-charge model that directly emerges from the parent spin model of the kagome dipolar spin ice. Our experimental and theoretical results provide insights into the physics of frustrated magnets and deepen our understanding of emergent fields through the use of tailor-made magnetism.Comment: 9 pages, 5 figures. Published version available on the Nat. Comm. web site: http://www.nature.com/ncomms/2016/160513/ncomms11446/full/ncomms11446.htm
    corecore