12 research outputs found

    Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    Get PDF
    We studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for a predictive frameshift in the open reading frame and introduction of a premature stop codon at position 783 instead of 919. The deletion was reproduced in androgen receptor wildtype cDNA and transfected into mammalian cells. Western blot showed a smaller androgen receptor of 94 kDa for the transfected mutated cDNA instead of 110 kDa. Androgen-binding assay of the mutated transfected cells assessed the lack of androgen-binding. Gel retardation assay demonstrated the ability of the mutant to bind target DNA; however, the mutant was unable to transactivate a reporter gene. Although the role of the partial deletion in the lack of androgen action was expected, in vitro analyses highlight the role of the abnormal C-terminal portion in the inhibition of the receptor transregulatory activity of the protein causing androgen resistance in this family

    Substitution of Ala564 in the first zinc cluster of the deoxyribonucleic acid (DNA)-binding domain of the androgen receptor by Asp, Asn, or Leu exerts differential effects on DNA binding

    Get PDF
    In the androgen receptor of a patient with androgen insensitivity, the alanine residue at position 564 in the first zinc cluster of the DNA-binding domain was substituted by aspartic acid. In other members of the steroid receptor family, either valine or alanine is present at the corresponding position, suggesting the importance of a neutral amino acid residue at this site. The mutant receptor was transcriptionally inactive, which corresponded to the absence of specific DNA binding in gel retardation assays, and its inactivity in a promoter interference assay. Two other receptor mutants with a mutation at this same position were created to study the role of position 564 in the human androgen receptor on DNA binding in more detail. Introduction of asparagine at position 564 resulted in transcription activation of a mouse mammary tumor virus promoter, although at a lower level compared with the wild-type receptor. Transcription activation of an (ARE)2-TATA promoter was low, and binding to different hormone response elements could not be visualized. The receptor with a leucine residue at position 564 was as active as the wild-type receptor on a mouse mammary tumor virus promoter and an (ARE)2-TATA promoter, but interacted differentially with several hormone response elements in a gel retardation assay. The results of the transcription activation and DNA binding studies could partially be predicted from three-dimensional modeling data. The phenotype of the patient was explained by the negative charge, introduced at position 564

    Endoglin (CD105) Expression Is Regulated by the Liver X Receptor Alpha (NR1H3) in Human Trophoblast Cell Line JAR

    No full text
    8 páginas, 5 figuras, 1 tabla -- PAGS nros. 968-975Human implantation involves invasion of the uterine wall and remodeling of uterine arteries by extravillous cytotrophoblasts. Defects in these early steps of placental development lead to poor placentation and are often associated with preeclampsia, a frequent complication of human pregnancy. One of the complex mechanisms controlling trophoblast invasion involves the activation of the liver X receptor beta (or NR1H2, more commonly known as LXRbeta) by oxysterols known as potent LXR activators. This activation of LXRbeta leads to a decrease of trophoblast invasion. The identification of new target genes of LXR in the placenta could aid in the understanding of their physiological roles in trophoblast invasion. In the present study, we show that the endoglin (ENG) gene is a direct target of the liver X receptor alpha (NR1H3, also known as LXRalpha). ENG, whose gene is highly expressed in syncytiotrophoblasts, is part of the transforming growth factor (TGF) receptor complex that binds several members of the TGFbeta superfamily. In the human placenta, ENG has been shown to be involved in the inhibition of trophoblast invasion. Treatment of human choriocarcinoma JAR cells with T0901317, a synthetic LXR-selective agonist, leads to a significant increase in ENG mRNA and protein levels. Using transfection and electrophoretic mobility shift assays, we demonstrate that LXR (as a heterodimer with the retinoid X receptor) is able to bind the ENG promoter on an LXR response element and mediates the activation of ENG gene expression by LXRalpha in JAR cells. This study suggests a novel mechanism by which LXR may regulate trophoblast invasion in pathological pregnancy such as preeclampsiaSupported by grants from the Centre National de la Recherche Scientifique, the Université Blaise Pascal, the Fondation Danone, the Fondation pour la Recherche Médicale INE2000-407031/1, and the Fondation BNP-Paribas. K.M. is a recipient of a doctoral fellowship from the Ministère de l'Education Nationale de Recherche et de la Technologie. C.B. is supported by grants from Ministerio de Educacion y Cienza of Spain (SAF2004-01390 and SAF2007-61827)Peer reviewe
    corecore