272 research outputs found

    Toward Improved Characterization of Human Mesenchymal Stem Cells for Use in Cellular Therapies: A Regulatory Science Perspective

    Get PDF
    Cellular therapies hold great potential to treat a variety of medical conditions. Product characterization of cellular therapies is particularly difficult, as they pose regulatory challenges due to donor heterogeneity and a lack of standard lot release tests that can reliably predict in vivo outcomes. In particular, multipotent stromal cells, also called mesenchymal stem cells (MSCs), are potentially valuable as a cellular therapy due to their regenerative capacity and immunosuppressive function. Due to the required expansion and inherent heterogeneity of MSCs, quantitative approaches capable of measuring differentiation capacity and immunosuppressive function between donors and passages on a per cell basis are needed. To address this unmet need, a sample set of human MSCs comprised of eight donors was created, cultured to early and late passages, and novel quantitative bioassays were established capable of measuring adipogenic and osteogenic differentiation on a per cell basis, as well as an in vitro assay to measure immunosuppressive function. Based on existing bioassays, MSCs demonstrate a decrease in overall proliferative potential and colony forming unit capacity, while expression of hallmark MSC surface markers remain unchanged. Utilizing automated microscopy techniques, adipogenic and osteogenic differentiation potential was quantified on a per cell basis, allowing us to directly assess the role of donor variability and in vitro culture on MSC function. Overall, donor variability and a decrease in differentiation potential with passage was demonstrated based on these quantitative assays. Since culture-expanded MSCs increase in cell size, this parameter was utilized to enrich for small cells, which demonstrated that the small cell population is more stem-like based on these applied quantitative bioassays. Lastly, immunosuppressive function of human MSCs on murine-derived clonal T cells was assessed utilizing a novel in vitro xenogeneic model system. Human MSCs can inhibit murine T cell activation, rendering this an ideal system to assess immunosuppressive function of MSCs in vitro. In conclusion, novel methods were established to quantify MSC function, and these findings were correlated with other previously-established quantitative bioassays to better understand the role of donor variability and passaging on MSC potency. Taken together, these quantitative approaches provide valuable tools to measure MSC quality, and supports continued efforts to improve characterization strategies for cellular therapies

    A Resource to Infer Molecular Paths Linking Cancer Mutations to Perturbation of Cell Metabolism

    Get PDF
    Some inherited or somatically-acquired gene variants are observed significantly more frequently in the genome of cancer cells. Although many of these cannot be confidently classified as driver mutations, they may contribute to shaping a cell environment that favours cancer onset and development. Understanding how these gene variants causally affect cancer phenotypes may help developing strategies for reverting the disease phenotype. Here we focus on variants of genes whose products have the potential to modulate metabolism to support uncontrolled cell growth. Over recent months our team of expert curators has undertaken an effort to annotate in the database SIGNOR 1) metabolic pathways that are deregulated in cancer and 2) interactions connecting oncogenes and tumour suppressors to metabolic enzymes. In addition, we refined a recently developed graph analysis tool that permits users to infer causal paths leading from any human gene to modulation of metabolic pathways. The tool grounds on a human signed and directed network that connects similar to 8400 biological entities such as proteins and protein complexes via causal relationships. The network, which is based on more than 30,000 published causal links, can be downloaded from the SIGNOR website. In addition, as SIGNOR stores information on drugs or other chemicals targeting the activity of many of the genes in the network, the identification of likely functional paths offers a rational framework for exploring new therapeutic strategies that revert the disease phenotype

    SIGNOR 3.0, the SIGnaling network open resource 3.0: 2022 update

    Get PDF
    The SIGnaling Network Open Resource (SIGNOR 3.0, ) is a public repository that captures causal information and represents it according to an 'activity-flow' model. SIGNOR provides freely-accessible static maps of causal interactions that can be tailored, pruned and refined to build dynamic and predictive models. Each signaling relationship is annotated with an effect (up/down-regulation) and with the mechanism (e.g. binding, phosphorylation, transcriptional activation, etc.) causing the regulation of the target entity. Since its latest release, SIGNOR has undergone a significant upgrade including: (i) a new website that offers an improved user experience and novel advanced search and graph tools; (ii) a significant content growth adding up to a total of approx. 33,000 manually-annotated causal relationships between more than 8900 biological entities; (iii) an increase in the number of manually annotated pathways, currently including pathways deregulated by SARS-CoV-2 infection or involved in neurodevelopment synaptic transmission and metabolism, among others; (iv) additional features such as new model to represent metabolic reactions and a new confidence score assigned to each interaction

    Apo, Zn 2 + -bound and Mn 2 + -bound structures reveal ligand-binding properties of SitA from the pathogen Staphylococcus pseudintermedius

    Get PDF
    Synopsis The Gram-positive bacterium Staphylococcus pseudintermedius is a leading cause of canine bacterial pyoderma, resulting in worldwide morbidity in dogs. S. pseudintermedius also causes life-threatening human infections. Furthermore, methicillin-resistant S. pseudintermedius is emerging, resembling the human health threat of methicillin-resistant Staphylococcus aureus. Therefore it is increasingly important to characterize targets for intervention strategies to counteract S. pseudintermedius infections. Here we used biophysical methods, mutagenesis, and X-ray crystallography, to define the ligand-binding properties and structure of SitA, an S. pseudintermedius surface lipoprotein. SitA was strongly and specifically stabilized by Mn 2 + and Zn 2 + ions. Crystal structures of SitA complexed with Mn 2 + and Zn 2 + revealed a canonical class III solute-binding protein with the metal cation bound in a cavity between Nand C-terminal lobes. Unexpectedly, one crystal contained both apo-and holo-forms of SitA, revealing a large sidechain reorientation of His 64 , and associated structural differences accompanying ligand binding. Such conformational changes may regulate fruitful engagement of the cognate ABC (ATP-binding cassette) transporter system (SitBC) required for metal uptake. These results provide the first detailed characterization and mechanistic insights for a potential therapeutic target of the major canine pathogen S. pseudintermedius, and also shed light on homologous structures in related staphylococcal pathogens afflicting humans

    NadA3 structures reveal undecad coiled coils and LOX1 binding regions competed by meningococcus B vaccine-elicited human antibodies

    Get PDF
    Neisseria meningitidis serogroup B (MenB) is a major cause of sepsis and invasive meningococcal disease. A multicomponent vaccine, 4CMenB, is approved for protection against MenB. Neisserial adhesin A (NadA) is one of the main vaccine antigens, acts in host cell adhesion, and may influence colonization and invasion. Six major genetic variants of NadA exist and can be classified into immunologically distinct groups I and II. Knowledge of the crystal structure of the 4CMenB vaccine component NadA3 (group I) would improve understanding of its immunogenicity, folding, and functional properties and might aid antigen design. Here, X-ray crystallography, biochemical, and cellular studies were used to deeply characterize NadA3. The NadA3 crystal structure is reported; it revealed two unexpected regions of undecad coiled-coil motifs and other conformational differences from NadA5 (group II) not predicted by previous analyses. Structure-guided engineering was performed to increase NadA3 thermostability, and a second crystal structure confirmed the improved packing. Functional NadA3 residues mediating interactions with human receptor LOX-1 were identified. Also, for two protective vaccine-elicited human monoclonal antibodies (5D11, 12H11), we mapped key NadA3 epitopes. These vaccine-elicited human MAbs competed binding of NadA3 to LOX-1, suggesting their potential to inhibit host-pathogen colonizing interactions. The data presented provide a significant advance in the understanding of the structure, immunogenicity and function of NadA, one of the main antigens of the multicomponent meningococcus B vaccine.IMPORTANCE The bacterial microbe Neisseria meningitidis serogroup B (MenB) is a major cause of devastating meningococcal disease. An approved multicomponent vaccine, 4CMenB, protects against MenB. Neisserial adhesin A (NadA) is a key vaccine antigen and acts in host cell-pathogen interactions. We investigated the 4CMenB vaccine component NadA3 in order to improve the understanding of its immunogenicity, structure, and function and to aid antigen design. We report crystal structures of NadA3, revealing unexpected structural motifs, and other conformational differences from the NadA5 orthologue studied previously. We performed structure-based antigen design to engineer increased NadA3 thermostability. Functional NadA3 residues mediating interactions with the human receptor LOX-1 and vaccine-elicited human antibodies were identified. These antibodies competed binding of NadA3 to LOX-1, suggesting their potential to inhibit host-pathogen colonizing interactions. Our data provide a significant advance in the overall understanding of the 4CMenB vaccine antigen NadA
    corecore