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Some inherited or somatically-acquired gene variants are observed significantly more
frequently in the genome of cancer cells. Although many of these cannot be confidently
classified as driver mutations, they may contribute to shaping a cell environment that
favours cancer onset and development. Understanding how these gene variants causally
affect cancer phenotypes may help developing strategies for reverting the disease
phenotype. Here we focus on variants of genes whose products have the potential to
modulate metabolism to support uncontrolled cell growth. Over recent months our team of
expert curators has undertaken an effort to annotate in the database SIGNOR 1) metabolic
pathways that are deregulated in cancer and 2) interactions connecting oncogenes and
tumour suppressors to metabolic enzymes. In addition, we refined a recently developed
graph analysis tool that permits users to infer causal paths leading from any human gene to
modulation of metabolic pathways. The tool grounds on a human signed and directed
network that connects ~8400 biological entities such as proteins and protein complexes
via causal relationships. The network, which is based on more than 30,000 published
causal links, can be downloaded from the SIGNORwebsite. In addition, as SIGNOR stores
information on drugs or other chemicals targeting the activity of many of the genes in the
network, the identification of likely functional paths offers a rational framework for exploring
new therapeutic strategies that revert the disease phenotype.
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INTRODUCTION

The cell responses to environmental stimuli or genetic perturbations are modulated by the signalling
network and by the cell metabolic landscape. In growing cells, the metabolite composition of the cell
milieu not only supports anabolic processes but also affects signal transduction and, as a
consequence, cell fate and function. Signalling and metabolism crosstalk as activation of
canonical cellular pathways often regulate metabolic-enzyme concentration or activity (Ward
and Thompson 2012). On the other hand, small molecules that are the product of metabolism
may affect the activity of signalling proteins and some metabolic enzymes fulfil distinct signalling
functions (Pietrocola et al., 2015; Frezza 2017; Godfrey and Kornberg 2020). Thus, it is becoming
increasingly apparent that signal transduction andmetabolism are not two separate processes but are
parts of a single large network of causal interactions.

These considerations are particularly relevant in cancer biology where alterations in oncogenes,
onco-suppressors (TSG) or additional modifier genes play important roles in redirecting cell
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metabolism to fulfil the biosynthetic demands associated with
proliferation (Warburg 1956; Pavlova and Thompson 2016;
Farhadi et al., 2020). In addition, tumour metabolism can
affect resistance to chemo-, radio-and immunotherapies as
well as targeted therapies (Zaal and Berkers 2018).

A complete and holistic understanding of themechanisms that
lead to cell transformation is essential to devise pharmacological
regimens that revert the disease phenotype by targeting metabolic
vulnerabilities (Luengo et al., 2017; Faubert et al., 2020).

A wide range of computational strategies have been proposed
to characterise the capabilities of biological systems through
analysis of metabolic network models (Antoniewicz 2021).
These include flux balance analysis (FBA), metabolic flux
analysis (MFA) and 13C-metabolic flux analysis (13C-MFA),
which exploit prior metabolic networks and make them
context specific by retaining only the reactions that fit with
experimental results. More recently, the group of Professor
Saez-Rodriguez has released COSMOS (Causal Oriented

FIGURE 1 | Representation of metabolism in SIGNOR. (A,B) three models that can be used to represent enzymatic reactions. See text for details. (C) Graph
representations of the metabolic pathways annotated in the SIGNOR databases. Orange square represents small organic molecules that participate in the enzymatic
interactions, Green circles are enzymes that catalyse the reactions or other proteins modulating their activities. Reactions are arbitrarily organized into nine metabolic
pathways that are identified by a different background colour. (D) Coverage in the SIGNOR database of the cancer driver genes annotated in the Cancer Gene
Census. The height of each green bar is proportional to the number of cancer genes in the SIGNOR human network that are annotated to 15 specific tumour types. The
fraction of cancer genes for which we couldn’t find causal information is in orange. T-ALL, T cell acute lymphoblastic leukaemia; NSCLC, Non-small-cell lung cancer;
NHL, non-Hodgkin lymphoma; MDS, myelodysplastic syndrome; DLBCL, diffuse large B-cell lymphoma; CLL, chronic lymphocytic leukaemia; AML, acute myeloid
leukaemia; ALL, acute lymphocytic leukaemia.
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Search of Multi-Omic Space) (Dugourd et al., 2021). COSMOS is
a complex computational method that makes use of prior
knowledge of signaling and metabolic networks to integrate
multi-omic datasets (e.g., phosphoproteomics, transcriptomics,
and metabolomics). The ultimate goal of COSMOS is the one of
generating novel hypotheses relevant for the experimental setup.

All the methods described leverage on prior knowledge models
extracted from the literature or from existing repositories. Over
recent years several resources have endeavoured to represent
published experimental information on signalling or metabolism
in a computer readable format (e.g. Recon3D, Reactome, KEGG
(Jassal et al., 2020; Kanehisa et al., 2017; Brunk et al., 2018, 3). The
complexity of biological interactions is captured by the different
resources by two main types of simplified models, often referred
to as “process descriptions” (PD) and “activity-flow” (AF)
(Figure 1) (Le Novère and Nicolas, 2015; Touré et al., 2020).
The two model types differ in structure and support different
types of analysis (Cesareni, Sacco, and Perfetto 2021). Recon3D
and Reactome integrate signalling and metabolism adopting
exclusively the PD model (Figure 1A), whereas KEGG adopts
the AF and the PD models to depict signalling and metabolic
pathways respectively. The absence of a unique representation
has frustrated attempts to compare and integrate the different
datasets and the integration of signalling and metabolism is
hampered by the lack of a unique graph model that
satisfactorily represents the crosstalk of signalling and
metabolism. Dugourd and colleagues, in the effort to develop
COSMOS and to embed metabolic activities into activity flow
graphs, have faced the challenge to map PD interactions
annotated in Recon3D onto an AF representation (Dugourd
et al., 2021).

Here we aim at proposing a new representation of metabolic
reactions that favours their integration with activity-flow
signalling models. In addition, we introduce a novel tool
allowing inference of the impact of any gene variant on a
selection of key metabolic pathways. To this end, we
embarked on a curation effort aimed at capturing in the
SIGNOR database (Licata et al., 2020) 1) metabolic pathways
that are deregulated in cancer and 2) interactions connecting
oncogenes and tumour suppressors to metabolic enzymes. This
dataset can be freely accessed via the CancerGeneNet resource
(https://signor.uniroma2.it/CancerGeneNet) (Iannuccelli et al.,
2020).

RESULTS

Integration of Metabolism Into a Causal
Model
Activity-flow (AF) models offer a simple, albeit powerful,
framework to represent the relationships governing the
crosstalk between biological entities (Touré et al., 2020;
Cesareni et al., 2021). They are particularly suited to support
Boolean modelling and to simulate the propagation of signals in
pathways where the activity of an entity is modulated either
positively or negatively by the activity of upstream entities
(Kauffman 1969). Metabolic reactions on the other hand are

better represented by process-description models (Figure 1A)
where the enzymatic reaction is pictured as a directed edge
symbolizing the chemical transition and linking the substrates
to the products. The enzyme activity is represented as a second
edge positively impacting on the chemical transition from
substrates to products. The latter are employed in quantitative
modelling approaches that are based on ordinary differential
equations. Recently, Dugourd and colleagues have proposed a
different graph representation of metabolic reactions (Figure 1B)
where the substrate is linked by an “activating” edge to the
enzyme that in turn connects to the substrate (Dugourd et al.,
2021). This model permits the integration of metabolic reactions
into a causal signalling network. However, it ignores information
about the specific link between each substrate and the
corresponding products of the enzymatic reaction. To address
this point, we present an alternative model to integrate enzymatic
reactions into logic models (Figure 1B). According to this
representation, both the substrate and the enzyme catalysing
the reaction connect to the product with activating edges, as
they are both necessary to yield the product. In addition, a
negative edge linking the enzyme to the substrate signals that
the activity of the enzyme leads to substrate consumption.

Curation of Metabolic Pathways in SIGNOR
SIGNOR was originally conceived as a resource to link signalling
proteins via causal relationships (Perfetto et al., 2016). It later
extended its scope to include additional biological entities
(protein families, complexes, siRNA, small molecules, etc.) that
could be relevant to represent signal propagation and its impact
on phenotypes. Initially, metabolism has not been a focus of the
project as enzymatic reactions could poorly be represented by the
model adopted in the resource. The development of the project, as
described in this report, was meant to overcome this limitation.
Over recent months, more than 1300 metabolic reactions and 120
metabolic enzymes have been integrated into the human causal
interactome. The enzymatic reactions have been organized into
nine pathways, concentrating on pathways whose activities are
deregulated in cancer cells (glycolysis and gluconeogenesis, citric
acid cycle, glycogenesis, glycogenolysis, aspartate and asparagine
metabolism, fatty acid synthesis, glutamine metabolism,
nucleotide biosynthesis, pentose phosphate (Joly, Chew, and
Graham 2021). In addition, we have identified, in each
pathway, key enzymes whose activities are rate limiting and
are therefore more likely to affect the metabolic flux when
their concentrations or activities are modulated
(Supplementary Table S1). The nine pathways merge into a
single completely connected large metabolic network embedded
into the human causal network (Figure 1C).

Increased Coverage of Cancer Genes
Over the past couple of years cancer genes have been a target of
the curation effort by the SIGNOR team. In 2019 a related
resource CancerGeneNet (Iannuccelli et al., 2020) was
developed to facilitate the inference of signalling paths
connecting cancer genes to cancer hallmark phenotypes
(Hanahan and Weinberg 2011). At that time 142 genes listed
in the Cancer Gene Census (CGC).
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(Sondka et al., 2018) could not be integrated into the human
network as we couldn’t retrieve from the literature any
experimental evidence of causal relationships with other
entities in the network. More recently the publication of causal
evidence for 16 additional genes in the cancer gene census
allowed their incorporation into the SIGNOR human network.
Presently over 84% of the 729 CGC genes are connected by causal
relationships to the SIGNOR network. The bar diagram in
Figure 1D reports the coverage in SIGNOR of the genes
annotated to 15 tumour classes in the CGC.

Recently, two consortia from different institutes have
reported CRISPR-Cas 9 screening that yielded lists of
prioritized therapeutic-gene targets (Tsherniak et al., 2017;
Behan et al., 2019). The results of the two independent screens
are highly concordant indicating that this approach yields
robust findings (Dempster et al., 2019). The gene hits of the
screens define a genetic background that favours tumour
growth. To increase the coverage of the causal network
connecting genes that have an impact on cancer we have
screened the literature looking for evidence of causal
interactions between genes in these lists and other genes in
the human network. This effort contributed to the integration
in the human causal network of approximately 276 cancer
dependency genes.

Inferred Impact of Cancer Genes on
Metabolism
Some cancer genes, when mutated, modify cell metabolism to
facilitate the biosynthesis of the macromolecules and organelles
required for assembling new cells. However, in many cases, the
underlying molecular mechanisms are poorly understood.

The integration of metabolic reactions into the human
signalling network permits to connect, via causal paths, the
activity of cancer genes to metabolic pathways. To this end we
have built, in the resource CancerGeneNet, a graph tool that
searches for short weighted-signed-directed paths linking two
nodes in the human causal network. The tool allows one to infer
how likely it is that a query protein (or a list of proteins)
modulates the activity or expression of key rate-limiting
enzymes in nine metabolic pathways.

Briefly, the tool is based on a selection of approx. 13,000 paths
that significantly link genes in SIGNOR to key rate-limiting
metabolic enzymes. To obtain this dataset we filtered the
entire SIGNOR interactome by applying the three following
steps: 1) we identified paths connecting, with four causal steps
or fewer, any gene in SIGNOR to metabolic pathways; 2) As each
path is associated with a distance score (see Methods), for each
considered metabolic pathway we could draw a distance

FIGURE 2 | Impact of cancer genes on metabolism. Oncogenes or onco-suppressors (TSG) that were found to be significantly closer to ten metabolic pathways
were classified as activators or inhibitors depending on whether the paths of causal interactions that permit joining the gene and the rate limiting enzymes contained an
even or odd number of inhibitory steps. The fraction of activating (UP) or inhibiting (DOWN) paths for each gene group (oncogenes in pink, onco-suppressors in blue), and
each pathway was plotted as bar graphs enclosed in rectangular frames. The bars in orange represent the average of an equivalent fraction in 1000 different
random collections of 700 genes. Significance of the observed differences was evaluated by a two-sided t-test (p value: * <0.025, ** <0.0025, *** <0.00025, ****
<0.000025).
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distribution and calculate a Z score for each gene distance; 3)
genes with a Z score < −1.96 (p-value <0.05) were considered to
be likely to have an impact on the pathway.

Genes with a Z score < −1.96 (p-value <0.05) were considered
to be likely to have an impact on the pathway. Next, we have
asked whether the list of genes annotated as oncogenes or tumour
suppressor genes by the CGC resource were enriched for genes
that affect metabolism. The result of this analysis showed that
40% (97/245) of the genes annotated as oncogenes are
significantly close to metabolic pathways. This is significantly
(p-value = 1.9E-05) higher than observed in 1000 collections of
randomly sampled genes (average 21%) and supports the notion
that genes that are found preferentially mutated in tumours are
more likely to affect metabolism than random genes.

As the paths that link genes to rate limiting enzymes are
“signed” we could also ask whether onco-genes or TSG are more
likely to upregulate or downregulate each of the targeted
metabolic pathways. To this end we considered the paths that
link the lists of oncogenes and onco-suppressors to metabolic
pathways and we classified them as activating or inhibiting
depending on whether they contained an even or odd number
of inhibitory steps. Next, we asked which pathways are more
likely to be up or down regulated by oncogenes and TSG
(Figure 2). Consistently with the notion that oncogene
expression tends to stimulate aerobic glycogenesis at the
expense of oxidative phosphorylation (Yu et al., 2017), by this
analysis 75% and 70% of paths predicted to positively regulate
glycolysis and negatively regulate the citric acid cycle start from
an oncogene. Conversely, TSG are predicted to have an opposite
impact on glucose utilization (Figure 2). In addition, cancer genes
are also predicted to activate various metabolic pathways,
including those generating nucleosides and amino acids to
facilitate the biosynthesis of macromolecules and organelles
required for building new cells.

Our graph approach not only suggests whether a cancer gene
has the potential to modulate a metabolic pathway but also
precisely points to the molecular steps underlying such
inferred modulation and lists the drugs or other chemicals
targeting the activity of the proteins in the path. More than
8,600 causal paths connecting cancer genes to rate limiting
metabolic genes are predicted by the graph algorithm that we
have developed. As an example, the Fms-like tyrosine kinase 3
gene (FLT3) that, when activated by the ITD oncogenic mutation,
promotes aerobic glycolysis is predicted by our algorithm to do so
via AKT-mediated upregulation of hexokinase. This prediction is
consistent with previously reported experimental findings (Ju
et al., 2017). A detailed discussion of this information is beyond
the scope of this report but interested readers can freely inspect
this information rich dataset by interrogating the CancerGeneNet
resource.

CONCLUSION

Metabolic changes in tumours have long been acknowledged
(Warburg 1956; Nanda et al., 2020) and metabolic pathways are
considered promising therapeutic targets (Batra et al., 2013).

However, the mechanistic details of the crosstalk between the
activity of the signalling pathways that are affected by oncogenes
or onco-suppressors and metabolism have not been clearly defined.
This limits our ability to design targeted therapeutic interventions.

An in-depth understanding of the functional interactions
underlying cancer metabolic reprogramming is essential to
identify cellular vulnerabilities that can be exploited for
therapeutic opportunities (Wolpaw and Dang 2018). Here we
have combined a curation effort to annotate experimental
evidence linking cell signalling and metabolism with the
development of graph algorithms, thus providing a tool that
supports the inference of causal paths underlying the molecular
mechanisms that explain the impact of gene mutations on cell
metabolism.

The results of this approach are made available via
interrogation of the CanceGeneNet resource (https://signor.
uniroma2.it/CancerGeneNet) where it is possible to visualize
the paths connecting genes to activity of rate limiting
enzymes. The resource can be interrogated with a query
protein or a list of proteins and results are displayed either
graphically or in a tabular format.

The curation work described in this report represents an
important addition to the functional network represented in
the SIGNOR resource that goes beyond mere consultation.
The integrated signaling-metabolic network supports users in
the interpretation of experimental results (e.g., proteomics,
phosphoproteomics or metabolomics) by offering a framework
that combines signaling and metabolism. The resource has been
primarily conceived to model how the signal transduction
cascades, triggered by oncogenes and TSG, modulate the
metabolic profile of malignant cells. However, it is not limited
to this scope, as the interactome that is available for download in
the CancerGeneNet resource contains causal paths linking any
gene in SIGNOR to metabolic pathways, thus supporting the
integration of omic data in a variety of biological contexts. To this
end, it would be of interest to expand the landscape of metabolic
pathways integrated in the resource.

When examining the paths by the approach described here, users
should consider that the SIGNOR human interactome is assembled
from observations in a variety of experimental systems. Not all
molecular connections that are annotated in the resource are active
in all cell contexts because either one of the proteins is not present or
not active in the specific cell type. Thus, each proposed molecular
path should be critically examined by domain experts. In principle
gene expression evidence could be exploited to filter out paths that
pass over nodes representing proteins that are not expressed in the
biological system of interest. Nevertheless, given that a number of
possible paths are suggested by interrogating the resource, domain-
experts are in the position to identify paths that are worth testing
experimentally.

METHODS

Input Datasets
The cancer-driver gene list (v95) was downloaded from the
Cancer Gene Census (CGC) web site (Sondka et al., 2018).
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The CGC associates 729 genes to 365 tumour types. 490 of these
genes are unambiguously classified as oncogenes (245) or TSG
(tumour suppressor genes) (245).

The strategy to find functional paths connecting cancer
genes to metabolic enzymes builds on a human causal network
assembled from the causal interactions captured from the
literature and annotated in the SIGNOR resource (Licata
et al., 2020). SIGNOR curators capture both direct (i.e.
MEK phosphorylates and activates ERK) and indirect
interactions (i.e. EGF stimulation enhances the activation of
ERK). The human interactome assembled for the analysis
reported here only includes direct interactions annotated in
the February 2022 version of SIGNOR. This dataset can be
downloaded from the SIGNOR website and is represented as a
signed directed graph of 8,486 nodes and 30,930 edges. Each
causal relationship in SIGNOR 2.0 is associated with a score
reflecting an estimate of its functional relevance and
experimental support.

SIGNOR Score
Interactions in SIGNOR are assigned a significance score, ranging
from 0.1 to 1. Interactions between proteins, protein families and
complexes are assigned a significance score calculated by using a
principal component regression (PCR) approach (Mevik and
Wehrens 2007) which yields a predictive model considering, as
supporting features, the number of experimental evidence in SIGN.

OR and score values extracted from the STRING database
(Szklarczyk et al., 2021). The model was refined by optimizing
its ability to predict the interactions participating in a
molecular pathway annotated in our resource. Interactions
involving the remaining classes of SIGNOR entities, namely
small molecules, phenotypes, stimuli, chemicals, fusion
proteins, miRNAs and antibodies are assigned an arbitrary
score (e.g., interactions involving chemicals and small
molecules are assigned a default significance score of 0.8).
Additional details are available at https://signor.uniroma2.it/
documentation/.

Estimating the Impact of a Protein on a
Metabolic Pathway
To investigate the regulatory impact of a protein (or a list of
proteins) on a metabolic pathway, we make use of the graph
representation of the human causal network annotated in
SIGNOR 2.0. We developed a tool that, for each query node
and metabolic pathway, “navigates” the network graph and
retrieves the shortest paths connecting the query node to a
rate-limiting enzyme of the end pathway. Shortest paths are
identified using a strategy adapted from Perfetto et al. (2021).
For each query protein and metabolic pathway, we retrieve all
the directional paths (of length of four steps or fewer)
connecting the query protein and the rate-limiting enzymes
(RLEs) of the pathway. As any step in the graph has a score (s),
we define the distance between any two interacting proteins as
d = 1- s and the path distance score of a path including more
than two nodes as the sum of the distance of the edges forming
the path. The lower the path distance score, the shorter is the

“functional distance” and more functionally relevant is
estimated the path. Next, we classify as proteins having an
influence on a metabolic pathway activity those proteins
having Z-score in the path distance distribution lower than
Z = −1.96 (p-value <0.05) The Z-score is computed over the
distribution of path distance scores considering the distance
between every protein in SIGNOR to the RLEs of any given
pathway. Nodes that cannot connect with four steps or fewer to
RLEs were arbitrarily assigned the highest path distance score
in the distribution.

The paths connecting the query protein to a metabolic
pathway are characterized by a distance and by a sign that
specifies whether the protein is inferred to have a positive or a
negative effect on pathway activity. Proteins connected by
paths formed by an odd number of inhibitory steps are
defined as inhibitors, otherwise are considered as activators.

Identification of the paths linking a query gene to any gene
annotated to a pathway was programmatically implemented
using the “all_simple_paths” function of the NetworkX
module of the Python language (Hagberg et al., 2008). The
function returns every short path linking any two nodes in an
oriented graph. We set a length cut-off (cut-off 4) as input
parameter in order to explore only pathways with a length that
is shorter or equal to the chosen threshold. R scripting was
used to run python scripts and to analyse results. The tool is
made available in the CancerGeneNet resource (https://
signor.uniroma2.it/CancerGeneNet/) (Iannuccelli et al.,
2020).

Metabolic Impact of Oncogenes and TSG
To identify the impact of oncogenes and tumour suppressor
genes (TSG) on the modulation of metabolic pathways we used
the strategy outlined in the previous section to link to the up- or
down-regulation of 10 metabolic pathways, 245 oncogenes or
245 TSGs as annotated in the Cancer Gene Census (CGC)
resource. We used the two-sided t-test to assess whether the
proportion of paths starting from oncogenes/TSGs and leading
to the up-/down-regulation of a key metabolic pathway is
significantly greater or smaller than the mean extracted from
a randomized dataset. Briefly, we generated lists of 700 genes
that were randomly chosen among the genes annotated in
SIGNOR. 700 corresponds to the number of genes in the
CGC resource. We generated 1000 of such random genes
lists and, for each, we evaluated the fraction of short paths
(<= 4 steps) starting from the input genes and impacting the up-
or down-regulation of the key metabolic pathways. We
eventually charted the distribution of these fractions and
performed a t-test.

To facilitate the interpretation of the results, the SIGNOR
pathway “glycolysis and gluconeogenesis” was demerged into two
sub-pathways: “Glycolysis” and “Gluconeogenesis.”
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