175 research outputs found

    Organ-specific features of natural killer cells.

    Get PDF
    Natural killer (NK) cells can be swiftly mobilized by danger signals and are among the earliest arrivals at target organs of disease. However, the role of NK cells in mounting inflammatory responses is often complex and sometimes paradoxical. Here, we examine the divergent phenotypic and functional features of NK cells, as deduced largely from experimental mouse models of pathophysiological responses in the liver, mucosal tissues, uterus, pancreas, joints and brain. Moreover, we discuss how organ-specific factors, the local microenvironment and unique cellular interactions may influence the organ-specific properties of NK cells

    Killer Cell Immunoglobulin-like Receptor Workshop: Insights into Evolution, Genetics, Function, and Translation

    Get PDF
    The seventh killer cell immunoglobulin-like receptor (KIR) workshop was held at Tammsvik, Stockholm, Sweden, in the summer of 2011. This intimate and isolated setting brought together approximately 100 investigators, from a range of scientific disciplines, who are all actively working on KIRs in humans or closely related primate species

    Characterization of Natural Killer Cell Phenotype and Function during Recurrent Human HSV-2 Infection

    Get PDF
    Human natural killer (NK) cell differentiation, characterized by a loss of NKG2A in parallel with the acquisition of NKG2C, KIRs, and CD57 is stimulated by a number of virus infections, including infection with human cytomegalovirus (CMV), hantavirus, chikungunya virus, and HIV-1. Here, we addressed if HSV-2 infection in a similar way drives NK cell differentiation towards an NKG2A-NKG2C+KIR+CD57+ phenotype. In contrast to infection with CMV, hantavirus, chikungunya virus, and HIV-1, recurrent HSV-2 infection did not yield an accumulation of highly differentiated NK cells in human peripheral blood. This outcome indicates that human HSV-2 infection has no significant imprinting effect on the human NK cell repertoire

    Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells

    Get PDF
    The relative contribution to cytotoxicity of each of the multiple NK cell activation receptors has been difficult to assess. Using Drosophila insect cells, which express ligands of human NK cell receptors, we show that target cell lysis by resting NK cells is controlled by different receptor signals for cytolytic granule polarization and degranulation. Intercellular adhesion molecule (ICAM)-1 on insect cells was sufficient to induce polarization of granules, but not degranulation, in resting NK cells. Conversely, engagement of the Fc receptor CD16 by rabbit IgG on insect cells induced degranulation without specific polarization. Lysis by resting NK cells occurred when polarization and degranulation were induced by the combined presence of ICAM-1 and IgG on insect cells. Engagement of receptor 2B4 by CD48 on insect cells induced weak polarization and no degranulation. However, coengagement of 2B4 and CD16 by their respective ligands resulted in granule polarization and cytotoxicity in the absence of leukocyte functional antigen-1–mediated adhesion to target cells. These data show that cytotoxicity by resting NK cells is controlled tightly by separate or cooperative signals from different receptors for granule polarization and degranulation

    CD1d-dependent Activation of NKT Cells Aggravates Atherosclerosis

    Get PDF
    Adaptive and innate immunity have been implicated in the pathogenesis of atherosclerosis. Given their abundance in the lesion, lipids might be targets of the atherosclerosis-associated immune response. Natural killer T (NKT) cells can recognize lipid antigens presented by CD1 molecules. We have explored the role of CD1d-restricted NKT cells in atherosclerosis by using apolipoprotein E–deficient (apoE−/−) mice, a hypercholesterolemic mouse model that develops atherosclerosis. ApoE−/− mice crossed with CD1d−/− (CD1d−/−apoE−/−) mice exhibited a 25% decrease in lesion size compared with apoE−/− mice. Administration of α-galactosylceramide, a synthetic glycolipid that activates NKT cells via CD1d, induced a 50% increase in lesion size in apoE−/− mice, whereas it did not affect lesion size in apoE−/−CD1d−/− mice. Treatment was accompanied by an early burst of cytokines (IFNγ, MCP-1, TNFα, IL-2, IL-4, IL-5, and IL-6) followed by sustained increases in IFNγ and IL-4 transcripts in the spleen and aorta. Early activation of both T and B cells was followed by recruitment of T and NKT cells to the aorta and activation of inflammatory genes. These results show that activation of CD1d-restricted NKT cells exacerbates atherosclerosis

    Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals.

    Get PDF
    HIV-specific CD8+ T cells demonstrate an exhausted phenotype associated with increased expression of inhibitory receptors, decreased functional capacity, and a skewed transcriptional profile, which are only partially restored by antiretroviral treatment (ART). Expression levels of the inhibitory receptor, T cell immunoglobulin and ITIM domain (TIGIT), the co-stimulatory receptor CD226 and their ligand PVR are altered in viral infections and cancer. However, the extent to which the TIGIT/CD226/PVR-axis is affected by HIV-infection has not been characterized. Here, we report that TIGIT expression increased over time despite early initiation of ART. HIV-specific CD8+ T cells were almost exclusively TIGIT+, had an inverse expression of the transcription factors T-bet and Eomes and co-expressed PD-1, CD160 and 2B4. HIV-specific TIGIThi cells were negatively correlated with polyfunctionality and displayed a diminished expression of CD226. Furthermore, expression of PVR was increased on CD4+ T cells, especially T follicular helper (Tfh) cells, in HIV-infected lymph nodes. These results depict a skewing of the TIGIT/CD226 axis from CD226 co-stimulation towards TIGIT-mediated inhibition of CD8+ T cells, despite early ART. These findings highlight the importance of the TIGIT/CD226/PVR axis as an immune checkpoint barrier that could hinder future "cure" strategies requiring potent HIV-specific CD8+ T cells

    Influenza A Virus Infection Induces Hyperresponsiveness in Human Lung Tissue-Resident and Peripheral Blood NK Cells

    Get PDF
    NK cells in the human lung respond to influenza A virus- (IAV-) infected target cells. However, the detailed functional capacity of human lung and peripheral blood NK cells remains to be determined in IAV and other respiratory viral infections. Here, we investigated the effects of IAV infection on human lung and peripheral blood NK cells in vitro and ex vivo following clinical infection. IAV infection of lung- and peripheral blood-derived mononuclear cells in vitro induced NK cell hyperresponsiveness to K562 target cells, including increased degranulation and cytokine production particularly in the CD56brightCD16− subset of NK cells. Furthermore, lung CD16− NK cells showed increased IAV-mediated but target cell-independent activation compared to CD16+ lung NK cells or total NK cells in peripheral blood. IAV infection rendered peripheral blood NK cells responsive toward the normally NK cell-resistant lung epithelial cell line A549, indicating that NK cell activation during IAV infection could contribute to killing of surrounding non-infected epithelial cells. In vivo, peripheral blood CD56dimCD16+ and CD56brightCD16− NK cells were primed during acute IAV infection, and a small subset of CD16−CD49a+CXCR3+ NK cells could be identified, with CD49a and CXCR3 potentially promoting homing to and tissue-retention in the lung during acute infection. Together, we show that IAV respiratory viral infections prime otherwise hyporesponsive lung NK cells, indicating that both CD16+ and CD16− NK cells including CD16−CD49a+ tissue-resident NK cells could contribute to host immunity but possibly also tissue damage in clinical IAV infection

    Unique transcriptional and protein-expression signature in human lung tissue-resident NK cells

    Get PDF
    Human lung tissue-resident NK cells (trNK cells) are likely to play an important role in host responses towards viral infections, inflammatory conditions and cancer. However, detailed insights into these cells are still largely lacking. Here we show, using RNA sequencing and flow cytometry-based analyses, that subsets of human lung CD69(-)CD16(-) NK cells display hallmarks of tissue-residency, including high expression of CD49a, CD103, and ZNF683, and reduced expression of SELL, S1PR5, and KLF2/3. CD49a(+)CD16(-) NK cells are functionally competent, and produce IFN-gamma, TNF, MIP-1 beta, and GM-CSF. After stimulation with IL-15, they upregulate perforin, granzyme B, and Ki67 to a similar degree as CD49a(-) CD16(-) NK cells. Comparing datasets from trNK cells in human lung and bone marrow with tissue-resident memory CD8(+) T cells identifies core genes co-regulated either by tissue-residency, cell-type or location. Together, our data indicate that human lung trNK cells have distinct features, likely regulating their function in barrier immunity.Peer reviewe
    • …
    corecore