180 research outputs found

    Investigation into the Bacterial Repelling Behavior of Superhydrophobic Modified Metal Surfaces for Food Safety and Hygiene

    Get PDF
    As a result of frequent outbreaks occurring due to poor hygiene and improper sanitation of processing environments, there has been an increasing demand for the development of food-contact surface materials that intrinsically inhibit and reduce the likelihood of potential microbial adherence and biofilm formation. Herein, we report the synergistic utilization of surface nanotexturing and chemical modifications with nonpolar functional groups on aluminum surfaces to produce coatings having bacterial super-repellant and mud anti-fouling characteristics. Using these coatings, the attachment of Salmonella Typhimurium LT2 and Listeria innocua as pathogen surrogates was reduced more than 99.0%, compared to the bare aluminum surfaces. In addition, the coating strongly resisted the adhesion of mud, showing a 10-fold reduction in the area of mud adhesion upon submerging in mud solution. Moreover, this method is both versatile and scalable, involving inert, non-leaching, and biocompatible building blocks. Overall, this study contributes to the field of food safety through the design and development of novel coatings for achieving improved food safety and hygiene

    Optimal Operation of an Integrated Electricity-heat Energy System Considering Flexible Resources Dispatch for Renewable Integration

    Get PDF
    Large fluctuations may occur on the energy supply and the load sides when large-scale renewable energies are integrated, leading to great challenges in power systems. The renewable power curtailment is especially numerous in the integrated electricity-heat energy system (IEHES) on account of electricity-heat coupling. The flexible resources (FRs) on both the energy supply and load sides are introduced into the optimal dispatch of the IEHES and further modeled to alleviate the renewable fluctuations in this paper. On the energy supply side, three kinds of FRs based on electricity-heat coordination are modeled and discussed. On the load side, the shiftable electricity demand resource is characterized. On this basis, the solution for FRs participating in IEHES dispatch is given, with goals of maximizing the renewable penetration ratio and lowering operation costs. Two scenarios are performed, and the results indicate that the proposed optimal dispatch strategy can effectively reduce the renewable energy curtailment and improve the flexibility of the IEHES. The contribution degrees of different FRs for renewable integration are also explored

    Intelligent Omni-Surfaces Aided Wireless Communications: Does the Reciprocity Hold?

    Full text link
    Intelligent omni-surfaces (IOS) have attracted great attention recently due to its potential to achieve full-dimensional communications by simultaneously reflecting and refracting signals toward both sides of the surface. However, it still remains an open question whether the reciprocity holds between the uplink and downlink channels in the IOS-aided wireless communications. In this work, we first present a physics-compliant IOS related channel model, based on which the channel reciprocity is investigated. We then demonstrate the angle-dependent electromagnetic response of the IOS element in terms of both incident and departure angles. This serves as the key feature of IOS that drives our analytical results on beam non-reciprocity. Finally, simulation and experimental results are provided to verify our theoretical analyses.Comment: 5 pages, 6 figure

    MorphStream: Scalable Processing of Transactions over Streams on Multicores

    Full text link
    Transactional Stream Processing Engines (TSPEs) form the backbone of modern stream applications handling shared mutable states. Yet, the full potential of these systems, specifically in exploiting parallelism and implementing dynamic scheduling strategies, is largely unexplored. We present MorphStream, a TSPE designed to optimize parallelism and performance for transactional stream processing on multicores. Through a unique three-stage execution paradigm (i.e., planning, scheduling, and execution), MorphStream enables dynamic scheduling and parallel processing in TSPEs. Our experiment showcased MorphStream outperforms current TSPEs across various scenarios and offers support for windowed state transactions and non-deterministic state access, demonstrating its potential for broad applicability

    Probability weighted four-point arc imaging algorithm for time-reversed lamb wave damage detection

    Get PDF
    Damage imaging based on scattering signals of ultrasonic Lamb waves in plate structure is considered as one of the most effective ways for structural health monitoring area. To improve location accuracy and reduce the impact of artifacts, a probability weighted four-point arc imaging algorithm for time reversal Lamb wave damage detection is proposed in this paper. By taking the defect as a secondary wave source, the four-point arc positioning method is used to calculate the propagation time of the signal from transducer to defect. And the amplitude of damage signal corresponding to the time of flight is used for imaging. In order to eliminate the artifacts, a damage probability weighting is combined with four-point circular arc imaging algorithm. The effectiveness of the proposed method is experimentally verified in aluminum plate. Experimental results indicate that damage location accuracy and imaging quality has been improved in both single-flaw and double-flaw samples compared with conventional delay-and-sum method

    A modified damage index probability imaging algorithm based on delay-and-sum imaging for synthesizing time-reversed Lamb waves

    Get PDF
    Imaging for damage in plate structure by Lamb waves is one of the most effective methods in the field of structural health monitoring. In order to improve the accuracy of damage localization, a novel method is proposed to modify damage exponent probability imaging algorithm based on delay-and-sum imaging by using time reversal Lamb waves. A new probability distribution function is introduced to improve the damage index probability method and is combined with delay-and-sum method for damage localization. Experimental results on aluminum plate show that the hybrid algorithm achieves better accuracy of damage location and imaging quality than the conventional delay-and-sum method

    Mobile-Seed: Joint Semantic Segmentation and Boundary Detection for Mobile Robots

    Full text link
    Precise and rapid delineation of sharp boundaries and robust semantics is essential for numerous downstream robotic tasks, such as robot grasping and manipulation, real-time semantic mapping, and online sensor calibration performed on edge computing units. Although boundary detection and semantic segmentation are complementary tasks, most studies focus on lightweight models for semantic segmentation but overlook the critical role of boundary detection. In this work, we introduce Mobile-Seed, a lightweight, dual-task framework tailored for simultaneous semantic segmentation and boundary detection. Our framework features a two-stream encoder, an active fusion decoder (AFD) and a dual-task regularization approach. The encoder is divided into two pathways: one captures category-aware semantic information, while the other discerns boundaries from multi-scale features. The AFD module dynamically adapts the fusion of semantic and boundary information by learning channel-wise relationships, allowing for precise weight assignment of each channel. Furthermore, we introduce a regularization loss to mitigate the conflicts in dual-task learning and deep diversity supervision. Compared to existing methods, the proposed Mobile-Seed offers a lightweight framework to simultaneously improve semantic segmentation performance and accurately locate object boundaries. Experiments on the Cityscapes dataset have shown that Mobile-Seed achieves notable improvement over the state-of-the-art (SOTA) baseline by 2.2 percentage points (pp) in mIoU and 4.2 pp in mF-score, while maintaining an online inference speed of 23.9 frames-per-second (FPS) with 1024x2048 resolution input on an RTX 2080 Ti GPU. Additional experiments on CamVid and PASCAL Context datasets confirm our method's generalizability. Code and additional results are publicly available at https://whu-usi3dv.github.io/Mobile-Seed/.Comment: Accepted by IEEE Robotics and Automation Letters (RA-L) 2024. Code, pre-trained models and additional results are available at https://whu-usi3dv.github.io/Mobile-Seed
    corecore