18,511 research outputs found
Preface: Impacts of extreme climate events and disturbances on carbon dynamics
The impacts of extreme climate events and disturbances (ECE&D) on the carbon cycle have received growing attention in recent years. This special issue showcases a collection of recent advances in understanding the impacts of ECE&D on carbon cycling. Notable advances include quantifying how harvesting activities impact forest structure, carbon pool dynamics, and recovery processes; observed drastic increases of the concentrations of dissolved organic carbon and dissolved methane in thermokarst lakes in western Siberia during a summer warming event; disentangling the roles of herbivores and fire on forest carbon dioxide flux; direct and indirect impacts of fire on the global carbon balance; and improved atmospheric inversion of regional carbon sources and sinks by incorporating disturbances. Combined, studies herein indicate several major research needs. First, disturbances and extreme events can interact with one another, and it is important to understand their overall impacts and also disentangle their effects on the carbon cycle. Second, current ecosystem models are not skillful enough to correctly simulate the underlying processes and impacts of ECE&D (e.g., tree mortality and carbon consequences). Third, benchmark data characterizing the timing, location, type, and magnitude of disturbances must be systematically created to improve our ability to quantify carbon dynamics over large areas. Finally, improving the representation of ECE&D in regional climate/earth system models and accounting for the resulting feedbacks to climate are essential for understanding the interactions between climate and ecosystem dynamics
Phenomenological Implications of Supersymmetric Family Non-universal U(1)-prime Models
We construct a class of anomaly-free supersymmetric U(1)' models that are
characterized by family non-universal U(1)' charges motivated from E_6
embeddings. The family non-universality arises from an interchange of the
standard roles of the two SU(5) 5* representations within the 27 of E_6 for the
third generation. We analyze U(1)' and electroweak symmetry breaking and
present the particle mass spectrum. The models, which include additional Higgs
multiplets and exotic quarks at the TeV scale, result in specific patterns of
flavor-changing neutral currents in the b to s transitions that can accommodate
the presently observed deviations inthis sector from the SM predictions.Comment: 25 pages, 3 figure
The gold standard: accurate stellar and planetary parameters for eight Kepler M dwarf systems enabled by parallaxes
We report parallaxes and proper motions from the Hawaii Infrared Parallax Program for eight nearby M dwarf stars with transiting exoplanets discovered by Kepler. We combine our directly measured distances with mass-luminosity and radiusāluminosity relationships to significantly improve constraints on the host starsā properties. Our astrometry enables the identification of wide stellar companions to the planet hosts. Within our limited sample, all the multi-transiting planet hosts (three of three) appear to be single stars, while nearly all (four of five) of the systems with a single detected planet have wide stellar companions. By applying strict priors on average stellar density from our updated radius and mass in our transit fitting analysis, we measure the eccentricity probability distributions for each transiting planet. Planets in single-star systems tend to have smaller eccentricities than those in binaries, although this difference is not significant in our small sample. In the case of Kepler-42bcd, where the eccentricities are known to be ā0, we demonstrate that such systems can serve as powerful tests of M dwarf evolutionary models by working in Lā ā Ļā space. The transit-fit density for Kepler- 42bcd is inconsistent with model predictions at 2.1Ļ (22%), but matches more empirical estimates at 0.2Ļ (2%), consistent with earlier results showing model radii of M dwarfs are underinflated. Gaia will provide high-precision parallaxes for the entire Kepler M dwarf sample, and TESS will identify more planets transiting nearby, late-type stars, enabling significant improvements in our understanding of the eccentricity distribution of small planets and the parameters of late-type dwarfs.Support for Program number HST-HF2-51364.001-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu. (HST-HF2-51364.001-A - NASA through Space Telescope Science Institute; NAS5-26555 - NASA; NNX09AF08G - NASA Office of Space Science; NASA Science Mission directorate
Emergent Universe from A Composition of Matter, Exotic Matter and Dark Energy
A specific class of flat Emergent Universe (EU) is considered and its
viability is tested in view of the recent observations. Model parameters are
constrained from Stern data for Hubble Parameter and Redshift ( vs. )
and from a model independent measurement of BAO peak parameter. It is noted
that a composition of Exotic matter, dust and dark energy, capable of producing
an EU, can not be ruled out with present data. Evolution of other relevant
cosmological parameters, viz. density parameter (), effective equation
of state (EOS) parameter () are also shown.Comment: 5 pages, 5 figures (accepted in MNRAS
- ā¦