70 research outputs found

    Etablierung der Echtzeit-Fluoreszenz-PCR zur Bestimmung des BCL-2-Transkriptes bei akuten myeloischen LeukÀmien

    Get PDF
    Das BCL-2 Gen wurde als Onkogen der t (14;18)(q32;q21)-Translokation bei follikulĂ€ren Non- Hodgkin-Lymphomen identifiziert. Die biologische Wirkung des BCL-2 Proteins liegt in der Hemmung der Apoptose. Bei der AML wird eine vermehrte BCL-2 Expression und eine dem- entsprechend verminderte Apoptose bei unreifen malignen myeloischen VorlĂ€uferzellen gefun- den. Diese Krankheit ist teilweise auch chemoresistent. Goldstandard der Induktionstherapie bei AML ist eine Kombination aus Ara-C und Idarubicin, welche Doppel- und Einzelstrang- brĂŒche der DNA induzieren. Apoptose der LeukĂ€miezellen wird durch SchĂ€digung der DNA ausgelöst. BCL-2 kann die Zellen durch Hemmung der Apoptose schĂŒtzen, indem es die Cy- tochrom-C-Freisetzung blockiert. DarĂŒber hinaus befinden sich die BCL-2- ĂŒberexprimierenden Zellen in der G0-Phase und sprechen dabei schlecht auf die Chemothera- pie an. Deshalb stellt BCL-2 den LeukĂ€miezellen "doppelten" Schutz zur VerfĂŒgung. BCL-2 spielt somit eine wichtige Rolle bei der Chemoresistenz. Ob ein Therapieprotokoll in der Be- handlung der AML effektiv ist, schlĂ€gt sich in der Kinetik der zunehmenden oder abnehmen- den BCL-2-Transkripte nieder. Zur Kontrolle des BCL-2-Transkriptes ist die quantitative PCR der qualitativen PCR ĂŒberlegen. Die Quantifizierung dieses Transkriptes wurde mittels Echtzeit-Fluoreszenz-PCR realisiert. Bei der Echtzeit-Fluoreszenz-PCR wird die Reaktion im geschlossenen ReaktionsgefĂ€ĂŸ durchge- fĂŒhrt, sodass die Gefahr von Kontamination minimiert werden kann. Da keine Post-PCR Schrit- te nötig sind, wird die ÜberprĂŒfung zahlreicher Proben durch ein 96-well-Format innerhalb eines Laufes ermöglicht. Die Echtzeit-Fluoreszenz-PCR garantiert ihre SpezifitĂ€t durch eine spezifi- sche Sonde-Zielsequenz-Bindung und erlaubt eine exakte Quantifizierung der BCL-2- Transkriptzahl. In der vorliegenden Arbeit wurde die BCL-2-Expression in 53 AML-FĂ€llen mittels Echtzeit- Fluoreszenz-PCR untersucht. Das ?-Actin Gen wurde als Referenzgen benutzt. FĂŒr die BCL-2- Expression wurde eine Ratio aus der Transkriptzahl des BCL-2 Gens und des ?-Actin Gens ge- bildet. Bei 53 AML-FĂ€llen, die den sieben AML-Subtypen zugeordnet werden konnten(FAB M0-M7), konnte eine BCL-2-Expression nachgewiesen werden. Trotz der unterschiedlich hohen BCL-2-Expression bei diesen Patienten, ergab sich keine signifikante Korrelation zwischen der BCL-2-Expression und den FAB-Subtypen. Außerdem wurde die BCL-2-Expression in T- Zellen, B-Zellen und Granulozyten aus 5 AML-Patienten nachgewiesen. Die BCL-2-Expression wurde nicht von den Subpoplationen der mononukleĂ€ren Zellen wie z.B. T-Zellen, B-Zellen, Granulozyten beeinflusst. Bei sieben Patienten wurden Proben im Verlauf untersucht. Dabei korrelierte eine hohe oder ansteigende BCL-2-Expression mit einem RĂŒckfall der AML. Die Anzahl der untersuchten Proben im Verlauf ist jedoch zu klein, um definitive Schlußfolgerungen zu ziehen. Eine prospektive Untersuchung von grĂ¶ĂŸeren Patientenzahlen erscheint sinnvoll.The bcl-2 oncogene was discovered by virtue of its association with the translocation, t(14;18) (q32;q21), observed in most follicular lymphomas. The bcl-2 protein is a 26 kDa integral membrane protein which functions by enhancing cell viability through the inhibition of apoptotic death. Acute myeloid leukemia is a lethal malignant disease characterized by an abnormal proliferation and differentiation of myeloid progenitor cells. The bcl-2 oncogene contributes to leukemogenesis by prolonging the life span of defected progenitor cells. Although the expression of bcl-2 in blast cells of acute myeloid leukemia is heterogeneous, a significant proportion of blast cells are shown to have high bcl-2 levels. The highest bcl-2 levels are found in cells that grow autonomously in vitro and also in blast cells expressing the CD34 surface antigen. These groups of AML patients are tranditionally the ones in which the prognosis is poor, because most of the chemotherapeutic agents like cytosine-arabinoside (Ara-C) exert their effect by triggering apoptosis. The high level of the bcl-2 gene that inhibits apoptosis is implicated in the resistance of AML blast cells to chemotherapy and leads to unfavorable prognosis. In this study, a real time fluorescence PCR assay was used to monitor the expression of the bcl-2 transcript in the therapeutic course of AML patients. By applying this rapid new developed quantitative method, the changes of the bcl-2 transcript with chemotherapy can help to evaluate the efficacy of therapeutic interventions in AML. The real time fluorescence PCR has many advantages over traditional measures. First, the assay is extremely rapid because post-PCR processing steps are unnecessary. All relevant data are collected real time during the course of a 2h PCR cycle program; data analysis can be completed in less than 10 min. Second, the assay from reaction set-up to data collection and analysis is a closed-tube system, which reduces the risk of false positive resulting from PCR product carry- over contamination and eliminates variation from additional pipetting steps. Finally, the real time fluorescence PCR is highly specific for the gene target of interest. Here the expression levels of the bcl-2 gene were measured in 53 patients with acute myeloid leukemia and normalized by ?-actin, a house-keeping gene expression as endogenous reference. The bcl-2/?-actin ratio from the 53 patients with AML was various, but not related to FAB subtypes. And also, this transcript ratio was not affected by mononucleated cell types. The samples from seven patients were measured to evaluate the association between the bcl-2 expression and the responsiveness of AML patients to the chemotherapy. The high or gradual elevation of the bcl-2 expression demonstrated the loss of effect in update-therapy protocol and the relapse in AML patients. Although the amount of samples are not large enough to reach the final conclusion, it is of significance that a number of patients will be analyzed in the future

    Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis

    Get PDF
    Colored dissolved organic matter (CDOM) is a major component of DOM in waters, and plays a vital role in carbon cycling in inland waters. In this study, the light absorption and three-dimensional excitation-emission matrix spectra (EEMs) of CDOM of 936 water samples collected in 2014–2017 from 234 lakes in five regions across China were examined to determine relationships between lake water sources (fresh versus saline) and their fluorescence/absorption characteristics. Results indicated significant differences regarding DOC concentration and aCDOM(254) between freshwater (6.68 mg C L−1, 19.55 m-1) and saline lakes (27.4 mg C L−1, 41.17 m-1). While humic-like (F5) and fulvic-like (F3) compounds contributed to CDOM fluorescence in all lake waters significantly, their contribution to total fluorescence intensity (FT) differed between saline and freshwater lakes. Significant negative relationships were also observed between lake altitude with either F5 (R2 = 0.63, N = 306) or FT (R2 = 0.64, N = 306), suggesting that the abundance of humic-like materials in CDOM tends to decrease with increased in lakes altitude. In high-altitude lakes, strong solar irradiance and UV exposure may have induced photo-oxidation reactions resulting in decreased abundance of humic-like substances and the formation of low molecular weight compounds. These findings have important implications regarding our understanding of C dynamics in lacustrine systems and the contribution of these ecosystems to the global C cycle

    Variations in the light absorption coefficients of phytoplankton, non-algal particles and dissolved organic matter in reservoirs across China

    Get PDF
    Reservoirs were critical sources of drinking water for many large cities around the world, but progress in the development of large-scale monitoring protocols to obtain timely information about water quality had been hampered by the complex nature of inland waters and the various optical conditions exhibited by these aquatic ecosystems. In this study, we systematically investigated the absorption coefficient of different optically-active constituents (OACs) in 120 reservoirs of different trophic states across five eco-regions in China. The relationships were found between phytoplankton absorption coefficient at 675 nm (aph (675)) and Chlorophyll a (Chla) concentration in different regions (R2:0.60-0.82). The non-algal particle (NAP) absorption coefficient (aNAP) showed an increasing trend for reservoirs with trophic states. Significant correlation (p < 0.05) was observed between chromophoric dissolved organic matter (CDOM) absorption and water chemical parameters. The influencing factors for contributing the relative proportion of OACs absorption including the hydrological factors and water quality factors were analyzed. The non-water absorption budget from our data showed the variations of the dominant absorption types which underscored the need to develop and parameterize region-specific bio-optical models for large-scale assessment in water reservoirs

    Monitoring Optical Variability in Complex Inland Waters Using Satellite Remote Sensing Data

    No full text
    Optical classification for water bodies was carried out based on satellite remote sensing data, which avoided the limitation of having a limited amount of in situ measured spectral data. Unsupervised cluster analysis was performed on 53,815 reflectance spectra extracted at 500-m intervals based on the same season or quasi-same season Landsat 8 SR data using the algorithm of fuzzy c-means. Lakes and reservoirs in the study area were comprehensively identified as three optical types representing different limnological features. The shape and amplitude characteristics of the reflectance spectra for the three optical water types indicated that one corresponds to the clearest water, one corresponds to turbid water, and the other is moderate clear water. The novelty detection technique was further used to label the match-ups of the in situ data set collected during 2006 to 2019 in 12 field surveys based on mathematical rules of the three optical water types. The results confirmed that each optical water type was associated with different bio-optical properties, and the total suspended matter of the clearest, moderate clear and turbid water types were 14.99 mg/L, 41.06 mg/L and 83.81 mg/L, respectively. Overall, the clearest, moderate clear and turbid waters in the study area accounted for 49.3%, 36.7% and 14.0%, respectively. The spatial distribution of optical water types in the study area was seamlessly mapped. Results showed that the bio-optical conditions of the water distributed across the southeast region were roughly homogeneous, but in most of other regions and within some water bodies, they showed a patchy distribution and heterogeneity. This study is useful for monitoring water quality and provides a useful foundation to develop or tuning algorithms to retrieve water quality parameters

    Monitoring Optical Variability in Complex Inland Waters Using Satellite Remote Sensing Data

    No full text
    Optical classification for water bodies was carried out based on satellite remote sensing data, which avoided the limitation of having a limited amount of in situ measured spectral data. Unsupervised cluster analysis was performed on 53,815 reflectance spectra extracted at 500-m intervals based on the same season or quasi-same season Landsat 8 SR data using the algorithm of fuzzy c-means. Lakes and reservoirs in the study area were comprehensively identified as three optical types representing different limnological features. The shape and amplitude characteristics of the reflectance spectra for the three optical water types indicated that one corresponds to the clearest water, one corresponds to turbid water, and the other is moderate clear water. The novelty detection technique was further used to label the match-ups of the in situ data set collected during 2006 to 2019 in 12 field surveys based on mathematical rules of the three optical water types. The results confirmed that each optical water type was associated with different bio-optical properties, and the total suspended matter of the clearest, moderate clear and turbid water types were 14.99 mg/L, 41.06 mg/L and 83.81 mg/L, respectively. Overall, the clearest, moderate clear and turbid waters in the study area accounted for 49.3%, 36.7% and 14.0%, respectively. The spatial distribution of optical water types in the study area was seamlessly mapped. Results showed that the bio-optical conditions of the water distributed across the southeast region were roughly homogeneous, but in most of other regions and within some water bodies, they showed a patchy distribution and heterogeneity. This study is useful for monitoring water quality and provides a useful foundation to develop or tuning algorithms to retrieve water quality parameters

    Health status and air pollution related socioeconomic concerns in urban China

    No full text
    Abstract Background China is experiencing environmental issues and related health effects due to its industrialization and urbanization. The health effects associated with air pollution are not just a matter of epidemiology and environmental science research, but also an important social science issue. Literature about the relationship of socioeconomic factors with the environment and health factors is inadequate. The relationship between air pollution exposure and health effects in China was investigated with consideration of the socioeconomic factors. Methods Based on nationwide survey data of China in 2014, we applied the multilevel mixed-effects model to evaluate how socioeconomic status (represented by education and income) contributed to the relationship between self-rated air pollution and self-rated health status at community level and individual level. Results The findings indicated that there was a non-linear relationship between the community socioeconomic status and community air pollution in urban China, with the highest level of air pollution presented in the communities with moderate socioeconomic status. In addition, health effects associated air pollution in different socioeconomic status groups were not equal. Self-rated air pollution had the greatest impact on self-rated health of the lower socioeconomic groups. With the increase of socioeconomic status, the effect of self-rated air pollution on self-rated health decreased. Conclusions This study verified the different levels of exposure to air pollution and inequality in health effects among different socioeconomic groups in China. It is imperative for the government to urgently formulate public policies to enhance the ability of the lower socioeconomic groups to circumvent air pollution and reduce the health damage caused by air pollution

    Wetland Fire Scar Monitoring and Its Response to Changes of the Pantanal Wetland

    No full text
    Fire is an important disturbance factor which results in the irreversible change of land surface ecosystems and leads to a new ecological status after the fire is extinguished. Spanning the period from August to September 2019, the Amazon Forest fires were an unprecedented event in terms of the scale and duration of burning, with a duration of 42 days in the Pantanal wetland. Based on the observation data of wildfire and two Sentinel-2A images separated by a 35-day interval, the objectives of this study are to use the Normalized Burn Ratio (NBR) to map the spatiotemporal change features of fire and then quantitatively measure the fire severity and the impact of fire on the Pantanal wetland. The overall accuracy and Kappa coefficient of the extracted results of wetland types reached 80.6% and 0.767, respectively, and the statistically analyzed results showed that wildfires did not radically change the wetland types of the Pantanal wetland, because the hydrological variation of the burned area was still the main change factor, with a dynamic ratio of &le;50%. Furthermore, the savanna wetland in the burned area was the wetland type which was most affected by the fire. Meanwhile, fire scars belonged to the moderate and low-severity burned areas, with a maximum burn area of 599 km2. The case enriches the research into the impact of wildfire as the main disturbance factor on the change of wetland types and provides a scientific reference for the restoration and sustainable development of global wetland ecosystems

    SPATIAL DISTRIBUTION AND THE POSSIBLE SOURCE OF CDOM FOR INLAND WATER IN SUMMER IN THE NORTHEAST CHINA

    No full text
    The availability of underwater light is a critical factor in the growth and abundance of primary producers in shallow embayments. The aim of this study was to examine the spatial distribution and the possible source of CDOM for inland water in summer in the northeast china. Absorption spectra of inland water samples were measured from 200nm to 800nm. Highest mean-value of a(375) occurred in Chagan Lake. A significant spatial difference was found among four different inland waters, and evident spatial variation was in Chagan Lake. A consistent negative non-linear relationship was recorded between S value and CDOM absorption coefficient. Furthermore, S value was used as a proxy for CDOM composition and source. Fulvic acids is primary contribution for CDOM absorption in Songhua Lake and Shitoukoumen Reservoir, but humic acids in Nanhu Lake and Chagan Lake. The relationships between CDOM absorption and total suspended matter concentration and chlorophyll-a concentration were analyzed. It demonstrated the biological processes source for Nanhu Lake, Shitoukoumen Reservoir and Chagan Lake. But for Songhua Lake, the dominating source is from river inputs, but biological process was also an important portion for CDOM concentration

    Creating an Inclusive Syllabus to Engage International Students and Local Students

    No full text
    Color poster with text, photographs, and graphs.As study abroad programs increase in popularity, the population of foreign exchange students increases across universities around the world. The main topic of this research project is peer-scaffolding in Chinese-English language learning. We looked at interview feedback from domestic and international students alike taking the Chinese language class to observe common benefits and challenges of learning and working together. This study was informed through the Sociocultural theories (Vygotsky, 1978), Language-Related Episodes (Ellis & Rod, 2009) and the Intercultural Communicative Competence (Deardorff, 2006).University of Wisconsin--Eau Claire Office of Research and Sponsored Program
    • 

    corecore