4,310 research outputs found

    CardioCam: Leveraging Camera on Mobile Devices to Verify Users While Their Heart is Pumping

    Get PDF
    With the increasing prevalence of mobile and IoT devices (e.g., smartphones, tablets, smart-home appliances), massive private and sensitive information are stored on these devices. To prevent unauthorized access on these devices, existing user verification solutions either rely on the complexity of user-defined secrets (e.g., password) or resort to specialized biometric sensors (e.g., fingerprint reader), but the users may still suffer from various attacks, such as password theft, shoulder surfing, smudge, and forged biometrics attacks. In this paper, we propose, CardioCam, a low-cost, general, hard-to-forge user verification system leveraging the unique cardiac biometrics extracted from the readily available built-in cameras in mobile and IoT devices. We demonstrate that the unique cardiac features can be extracted from the cardiac motion patterns in fingertips, by pressing on the built-in camera. To mitigate the impacts of various ambient lighting conditions and human movements under practical scenarios, CardioCam develops a gradient-based technique to optimize the camera configuration, and dynamically selects the most sensitive pixels in a camera frame to extract reliable cardiac motion patterns. Furthermore, the morphological characteristic analysis is deployed to derive user-specific cardiac features, and a feature transformation scheme grounded on Principle Component Analysis (PCA) is developed to enhance the robustness of cardiac biometrics for effective user verification. With the prototyped system, extensive experiments involving 25 subjects are conducted to demonstrate that CardioCam can achieve effective and reliable user verification with over 99% average true positive rate (TPR) while maintaining the false positive rate (FPR) as low as 4%

    Dielectrics under Electric Field

    Get PDF
    The chapter first gives a brief introduction on conduction, polarization, dissipation, and breakdown of dielectrics under electric field. Then, two of electric field-related applications, dielectrics for electrical energy storage and electrocaloric (EC) effect for refrigeration are discussed. Conclusion and perspectives are given at last

    Large-Plaintext Functional Bootstrapping in FHE with Small Bootstrapping Keys

    Full text link
    Functional bootstrapping is a core technique in Fully Homomorphic Encryption (FHE). For large plaintext, to evaluate a general function homomorphically over a ciphertext, in the FHEW/TFHE approach, since the function in look-up table form is encoded in the coefficients of a test polynomial, the degree of the polynomial must be high enough to hold the entire table. This increases the bootstrapping time complexity and memory cost, as the size of bootstrapping keys and keyswitching keys need to be large accordingly. In this paper, we propose to encode the look-up table of any function in a polynomial vector, whose coefficients can hold more data. The corresponding representation of the additive group Zq used in the RGSW-based bootstrapping is the group of monic monomial permutation matrices, which integrates the permutation matrix representation used by Alperin-Sheriff and Peikert in 2014, and the monic monomial representation used in the FHEW/TFHE scheme. We make comprehensive investigation of the new representation, and propose a new bootstrapping algorithm based on it. The new algorithm has the prominent benefit of small bootstrapping key size and small key-switching key size, which leads to polynomial factor improvement in key size, in addition to constant factor improvement in run-time cost.Comment: 12 pages,under review of some journa

    Experimental study on dynamic performance of pneumatic flexible manipulator with single degree of freedom

    Get PDF
    Aiming at the problem of insufficient transverse stiffness of flexible manipulator, a kind of pneumatic flexible manipulator with single degree of freedom is developed by using elongated pneumatic artificial muscle joint as the actuator. The structure and functional principle of the manipulator are introduced. The dynamic experiment of the manipulator was carried out by using the three-dimensional motion measurement system, and the dynamic characteristics of the manipulator under three different incentive signals (step, pulse and ramp ) were analyzed, which provided a basis for the establishment of the manipulator control model in the later stage
    • …
    corecore