495 research outputs found

    High Sensitivity Optical Fiber Interferometric Sensors

    Get PDF
    Optical fiber interferometers have been widely employed and investigated for monitoring the changes in both physical and chemical parameters, with the advantages of compact size, light weight, immunity to electromagnetic interference, high sensitivity, capability to work in harsh environments and remote operation capabilities. Among the different kinds of fiber sensors based on interferometry, singlemode-multimode-singlemode (SMS) structures has attracted considerable interest due to their inherent advantages of high sensitivity, ease of fabrication and interconnection to other fiber systems and low cost. However, the challenge is that the sensitivity of the traditional SMS based fiber structure is not sufficient in some cases, for example in bio-chemical applications, where detection of a very small variation in a bio-chemicals’ concentration is required. There is thus a need to investigate how to modify or enhance an SMS structure to achieve ultrahigh sensitivity. This thesis presents research and its applications concerning approaches to improve the sensitivity and detection accuracy of a traditional SMS fiber structure based sensor. The key achievements of this thesis include: Traditional SMS fiber structure for breathing state monitoring A bend SMS structure is investigated as a breathing sensor by attaching it to a thin plastic film in an oxygen mask. Breath rate can be monitored using this sensor by detecting power variations due to the macro bending applied to the SMS section during each inhalation and exhalation cycles. Different types of breathing conditions including regular and irregular breath patterns can be distinguished. The proposed sensor is capable of working in a strong electromagnetic field and radioactive environment. Tapered small core singlemode fiber (SCSMF) for the detection of refractive index (RI), ammonia, and volatile organic compounds (VOCs) A modified SMS structure based on a tapered SCSMF is proposed and investigated with significantly improved RI sensitivity. It is found that the sample with a smaller waist diameter gives higher sensitivity. In the experiment, a maximum sensitivity of 19212.5 nm/RIU (RI unit) in the RI range from 1.4304 to 1.4320 has been demonstrated when the waist diameter of the SCSMF is tapered down to 12.5 μm. The best corresponding theoretical resolution of the proposed sensor is 5.025 × 10-7 RIU which is over 10 times higher than that of many previous reported optical fiber based RI sensors. The proposed structure is capable of monitoring relative humidity level change even without coating of the fiber sensor’s surface with a layer of hygroscopic material. A silica sol-gel based coating has been used as a sensitive material to ammonia for the first time, by applying it to the surface of the tapered SCSMF for the detection of ammonia in water. The proposed sensor shows an ultra-high sensitivity of 2.47 nm/ppm with short response and recovery time of less than 2 and 5 minutes respectively. The corresponding theoretical detection limit of ammonia in water is calculated to be 4 ppb, which is 3 orders of magnitude improvement compared to the previous reported interferometry based ammonia sensor. In addition, the sensor has good performance in terms of repeatability of measurement and selectivity for sensing ammonia compared to that of other common ions and organic molecules in water. VOCs sensors are also demonstrated by coating a mixture of sol-gel silica and Nile red on the surface of two different types of tapered fiber sensors (tapered SCSMF) and a microfiber coupler (MFC)). The MFC based sensor shows better sensitivities to ethanol and methanol than that based on a tapered SCSMF due to its smaller waist diameter. The detectable gas concentration changes of the MFC based sensor are calculated to be ~77 ppb and ~281 ppb for ethanol and methanol respectively which are over one order of magnitude improvement than many other reports. The sensors also show fast response times of less than 5 minutes and recovery times varied from 7 to 12 minutes. Simultaneous measurement of ethanol and methanol is achieved by utilizing two different coating recipes. Hollow core fiber (HCF) structure for high temperature and twist sensing. A modified SMS structure with much improved spectral quality factor (Q) is investigated both theoretically and experimentally. The modified structure is based on a HCF. It is found that periodic transmission dips with high spectral extinction ratio and high Q factor are excited because of the multiple beam interferences introduced by the cladding of the HCF. The HCF structure can be used as a high sensitivity (up to 33.4 pm/°C) temperature sensor in a wide working temperature range (from room temperature to 1000 °C). By coating a thin layer of silver (~ 6.7 nm) on one side of the HCF surface, a twist sensor with a maximum sensitivity of 0.717 dB/°has been achieved, which is the highest twist sensitivity reported for intensity modulation based fiber sensors, with excellent measurement repeatability. Further theoretical and experimental investigation attributes this high twist sensitivity to the polarization dependent reflection coefficient at the outer HCF surface associated with the partial silver coating

    テラヘルツ小型導波路および共振器のための周期的金属構造の研究

    Get PDF
    この博士論文は内容の要約のみの公開(または一部非公開)になっています筑波大学 (University of Tsukuba)201

    Effect of preparation method of palygorskite-supported Fe and Ni catalysts on catalytic cracking of biomass tar

    Get PDF
    In this study, the effect of catalyst preparation and additive precursors on the catalytic decomposition of biomass using palygorskite-supported Fe and Ni catalysts was investigated. The catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is concluded that the most active additive precursor was Fe(NO3)3·9H2O. As for the catalyst preparation method, co-precipitation had superiority over incipient wetness impregnation at low Fe loadings

    Compact Humidity Sensor Based on a Multi-layer Agarose Hydrogel Coated Silica Microsphere Resonator

    Get PDF
    In this paper we report on a novel approach to implementing a compact humidity sensor that utilizes whispering gallery mode (WGM) phenomena in a silica microsphere coated with Agarose hydrogel. The spectral positions of the WGM resonances for such a sensor depend strongly on the refractive index and thickness of the coating. The WGM’s spectral shift occurs due to adsorption/desorption of the water vapor in response to changes in ambient humidity and also due to the corresponding changes of the coating thickness. We experimentally investigated the WGMs spectral shift for a 100 μm diameter silica microsphere coated with Agarose hydrogel over a wide range of relative humidity (RH) values from 30%RH to 70%RH at a constant temperature. Six dip coating cycles of 2.25% wt. /vol. Agarose hydrogel were carried out in sequence with a characterization of the sensor performed for each coating thickness. A resonance shift of 16 nm is achieved in our experiment for the six-layer Agarose hydrogel coating senso

    Agarose Coated Spherical Micro Resonator for Humidity Measurements

    Get PDF
    A new type of fiber optic relative humidity (RH) sensor based on an agarose coated silica microsphere resonator is proposed and experimentally demonstrated. Whispering gallery modes (WGMs) in the micro resonator are excited by evanescent coupling using a tapered fiber with ~3.3 μm waist diameter. A change in the relative humidity of the surrounding the resonator air induces changes in the refractive index (RI) and thickness of the Agarose coating layer. These changes in turn lead to a spectral shift of the WGM resonances, which can be related to the RH value after a suitable calibration. Studies of the repeatability, long-term stability, measurement accuracy and temperature dependence of the proposed sensor are carried out. The RH sensitivity of the proposed sensor depends on the concentration of the agarose gel which determines the initial thickness of the deposited coating layer. Studies of the micro- resonators with coating layers fabricated from gels with three different Agarose concentrations of 0.5%, 1.125% and 2.25 wt./vol.% showed that an increase in the initial thickness of the coating material results in an increase in sensitivity but also leads to a decrease of quality factor (Q) of the micro resonator. The highest sensitivity achieved in our experiments was 518 pm/%RH in the RH range from 30% to 70%. The proposed sensor offers the advantages of a very compact form factor, low hysteresis, good repeatability, and low cross sensitivity to temperature
    corecore