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Compact humidity sensor based on a multi-layer Agarose hydrogel 

coated silica microsphere resonator 
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Semenovaa   

 
aPhotonics Research Center, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland 

bDepartment of Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne, 

NE1 8ST, United Kingdom 
 

ABSTRACT  

In this paper we report on a novel approach to implementing a compact humidity sensor that utilizes whispering gallery 

mode (WGM) phenomena in a silica microsphere coated with Agarose hydrogel. The spectral positions of the WGM 

resonances for such a sensor depend strongly on the refractive index and thickness of the coating. The WGM’s spectral 

shift occurs due to adsorption/desorption of the water vapor in response to changes in ambient humidity and also due to 

the corresponding changes of the coating thickness. We experimentally investigated the WGMs spectral shift for a 100 

µm diameter silica microsphere coated with Agarose hydrogel over a wide range of relative humidity (RH) values from 

30%RH to 70%RH at a constant temperature. Six dip coating cycles of 2.25% wt. /vol. Agarose hydrogel were carried out 

in sequence with a characterization of the sensor performed for each coating thickness. A resonance shift of 16 nm is 

achieved in our experiment for the six-layer Agarose hydrogel coating sensor. 

 

Keywords: Optical Resonators; Micro-optical Devices; Fiber Optic Sensors; Micro structured fibers 

 

1. INTRODUCTION  

Optical microcavity resonators are versatile building blocks that can provide solutions in a variety of areas, including 

optical sensing [1] and optical communications [2]. One approach is to adapt traditional Fabry-Perot (FP) resonators, but 

FP resonators are difficult to scale to micro sizes and are also difficult to integrate. Silica microsphere microresonators are 

widely used for many applications as they can have quality factors that are several orders of magnitude better than typical 

surface etched resonators and they also possess as small modal volume, which allows for sensors that required very small 

amounts of analyte. Light is confined inside the microcavity by total internal reflection. Resonance occurs when light 

retains the same phase after each cycle of propagation. This is known as a Whispering Gallery Mode (WGM) resonance.  

Since these microcavities can be shaped by natural surface tension forces during fabrication, the result is a clean, smooth 

silica surface with low optical loss and negligible scattering. Such microcavity are also inexpensive, simple to fabricate, 

and are compatible with integrated optics. Optical microcavity resonators are particularly useful for optical sensing given 

that ultra-high Q factors in the order of ~1010 have been demonstrated for a variety of sensing applications [3].  

The presence of water vapors in the air is known as humidity. It plays a significant role in agriculture, food industry, 

clinical medicine, manufacturing, civil engineering, textile, semiconductor industry and many other fields. Humidity 

measurement in industries is critical because it may affect the quality of the product, for example the shelf-life of 

foodstuffs. Hence, humidity sensing is very important, especially in the control systems for industrial processes and for 

human comfort. In recent decades, various humidity sensors have been proposed and developed, which sense relative 

humidity (RH) in terms of resistance [4,5], capacitance [6], or refractive index (RI) [7]. Fiber-optic humidity sensor has 

some notable advantages over conventional electronic based humidity sensors, such as miniature dimensions, light weight, 

a potential for multi-parametric sensing, immunity to electromagnetic interference, water and corrosion resistance and 

radiation tolerance. The methods involved in the measurement of humidity using fiber optic humidity sensor are based on 
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 a variety of principles, including absorption [8], evanescent wave [9], interferometric [10], strain [11] and the use of an 

LPFG (Long Period Fiber Grating) [12]. Due to the ultra-high Q factor of optical microresonator, the potential resolution 

for humidity measurement is better than other fiber optic humidity sensors. For example, for humidity sensing for a long-

period fiber-grating device coated with SiO2 nanoparticles it is estimated the minimum detectable humidity change if of 

the order of 1% RH whereas for a microsphere coated with same SiO2 nanoparticles in spherical microresonator the 

minimum detectable change is estimated be around 0.003%RH [13]. 

 

In this paper, we propose a compact spherical micro resonator humidity sensor utilizing WGMs. The microsphere is made 

of silica fiber and dip coated with several layers of a hygroscopic material known as Agarose. Agarose gel, as a smart 

material, has proved to be highly stable, not soluble in water and can be handled easily during device fabrication. Humidity 

changes induce a refractive index (RI) change in coating layer and thus a shift in the resonance wavelength, which with a 

suitable calibration can be used to measure humidity change. We have observed that the sensitivity to humidity increased 

after introducing each new layer of Agarose coating to a 100 µm microsphere, over a wide range of humidity levels from 

30% to 70% RH. We report a detailed study of the sensor in terms of its sensitivity, repeatability, long term stability and 

measured accuracy. 

2. EXPERIMENTAL INVESTIGATION AND DISCUSSION 

The microsphere for our experiments was fabricated at the tip of a standard single mode fiber by discharging a series of 

electric arcs. The fiber tip was gradually melted by the arcs and assumed spherical shape due to surface tension. The sphere 

diameter was controlled by the number of arcs induced on the tip of the fiber. Fig.1 shows a microscopic image of a 100 

µm diameter microsphere, which is used in our experiment. Agarose is commercially available in a white powder form 

(Sigma Aldrich, A6013). An Agarose solution was firstly prepared by adding 2.25% wt./vol. of   Agarose powder into 

deionized (DI) water and the solution was constant stirred at 80 °C temperature until the Agarose powder completely 

dissolved the DI water. Next the microsphere was quickly dipped in to and out of the Agarose hydrogel and subsequently 

was kept at room temperature for one day before use to allow drying to take place. The same procedure was followed for 

second, third, fourth, fifth and sixth coating cycles on the same microsphere.  

 

 
Figure 1. Microscopic photographs of the microsphere having 100 µm diameter used in the experiment 

 

An adiabatically tapered fiber was used to couple light into and out of the microsphere. The tapered fiber was prepared by 

a micro heater brushing technique [14] from a standard SMF-28TM single mode fiber, having a core and cladding diameter 

8.3 µm and 125µm respectively. After tapering to ensure mechanical stability, the tapered fiber was fixed on a microscopic 

glass slide at a height of approximately 5 mm above the surface of the glass slide using UV curable epoxy. The tapered 

waist diameter was ~3.3 µm with a length in our experiment of approximately 2 mm. Fig. 2 shows the experimental setup 

for humidity measurement. The light from a fiber coupled superluminescent diode (SLD) light source (Thorlabs 

S5FC1005S) was transmitted through a polarizer to the tapered optical fiber. The other end of fiber taper was connected 

to optical spectrum analyzer. 

 

 



 

 
 

 

The coated microsphere was positioned in contact with the tapered fiber inside a controlled humidity chamber (ETS5503) 

as shown in Fig. 2. The environmental chamber consists of ~0.11 m3 airtight space with an inlet and an outlet. The upper 

inlet is made for the entry of the moist air into the chamber and the outlet is used for dragging the moist air to the 

dehumidifier through a pump. The dehumidifier box contains anhydrous calcium sulfate which absorb  

 

 
 

Figure 2. Experimental setup with controlled humidity chamber 
 

moisture from the air. The compressed dry air is pumped in to regulate the RH in the chamber. Humid air was obtained by 

bubbling dry air into an ultrasonic humidification system (ETS5462) controlling the ratio of humid air and compressed 

dry air in the chamber gives a fixed RH. The chamber controller system allows for independent setup of both temperature 

and humidity inside the chamber. The accuracy of the chamber is ±2% RH. Each humidity measurement was recorded 

five minutes after the RH level reached a set value to allow for the humidity throughout the chamber to stabilize. Light 

from SLD source is coupled into the coated microsphere by evanescent coupling from the fiber taper.                      
 

The WGM spectral positions are recorded at the output end of the taper fiber by detection of the transmitted light intensity 

using an optical spectrum analyzer (OSA, Advantest Q8384) with a resolution of 0.01 nm. In order to eliminate the effect 

of temperature variations, the temperature of the humidity chamber was set to a constant at 23 °C (close to room 

temperature) throughout the entire RH measurement cycle. The transmission spectrum achieved from the 100 µm sphere 

is shown in Fig.3. 

 

 

Figure 3. Transmission spectrum recorded with an Agarose coated microsphere with a diameter of 100 µm 

The value of the free spectral range (F.S.R) determined from the graph (5.187 nm) can be used to estimate the microsphere 

diameter or its effective refractive index based on the approximate formula [3] 

                                                                 F.S.R ≈ 

s
πDn

2
0
λ

                                                                          (1) 



 

 
 

 

where λ0, ns and D are the resonant wavelength, the refractive index of the microsphere and the microsphere diameter, 

respectively. Assuming that the RI of the micro resonator is close to that of silica (ns = 1.4628), the resulting calculated 

microsphere diameter is 101 µm at resonance wavelength 1552 nm, which is in a good agreement with the result of the 

microscopic measurement (Fig. 1). Experimental measurement of humidity inside chamber was carried out with the coated 

microsphere by observing one of the resonance wavelengths of the micro resonator under the influence of a controlled 

humidity variation. The sensing mechanism of Agarose gel is based on the swelling behavior of the Agarose gel upon 

adsorption of water vapors with an increase of ambient humidity [15]. As shown in Fig 4(a), an increase of humidity inside 

the chamber gives rise to the adsorption of more water vapors on the surface of the microsphere. As a result, the air inside 

the micro pores of the coating layer is replaced by water molecules due to the hygroscopic nature of the material and 

capillary forces, which in turn gives rise to an increase in the effective refractive index of the Agarose coating layer [16]. 

As a result, a redshift in the WGM spectrum is observed with an increase in the humidity from 30 % to 70% at a constant 

temperature of 23±0.4 °C. A commercially available electronic hygrometer sensor head is used to calibrate the humidity 

measurement inside the chamber. Fig.4 (b) is the linear plot of the change in resonance wavelength vs change in humidity 

inside the chamber. From the graph Fig 4(b), the sensitivity of the sensor to the humidity was calculated as 22.4 pm/%RH. 

Similarly, when the humidity decreases inside the chamber, water vapors are desorbed from the coating layer, hence the 

effective refractive index of the coated layer decreases resulting in a blue shift of the resonance wavelength as shown in 

the Fig.4 (c). 

 

 

 
 

Figure 4. Experimental results for the WGM resonator based on a 100 µm diameter microsphere coated with two cycles of 2.25% 

Agarose gel coupled with a 3.3 µm tapered fiber in the range of humidity from 30 % to 70% RH at a constant 

temperature of 23 0C. (a) WGM spectra at different RH levels at gradually increasing humidity; (b) Linear response for 

resonance shift wavelength vs a change in humidity; (c) WGM spectra at different RH levels for gradually decreasing 

humidity. 

 

Since it is known [17] for conventional fiber sensors that an increase in the coating thickness can increase sensitivity, in 

order to determine if the same is true for the sensitivity of the micro resonator, the microsphere was subjected to 2nd,3rd 

,4th ,5th and 6th coating cycles of Agarose hydrogel. After finishing each coating cycle, the microsphere was characterized 

for its humidity response inside the test chamber. The humidity inside the chamber was varied from 70% RH to 30% RH 

at a constant temperature. From Fig. 5, it is clear that with an increase in the number of coating cycles of Agarose on the 

microsphere, the shift in the WGM resonance wavelength also increased accordingly. The maximum shift in the WGM 

wavelength was found to be 370 pm for the 1st coating cycle of Agarose layer whereas the shift for the 3rd coating cycle 

was approximately 1.54 nm, which was four times greater than the 1st coating cycle for the same humidity variation. After  



 

 
 

 

the sixth coating cycle, the sensor RH sensitivity was further increased, with a resonance wavelength shift around 16.5 nm 

and a sensitivity calculated as 518 pm/%RH in the range of 30-70%RH. The exact Agarose coating thickness was unknown 

in our experiment but it is known that coating thickness influences [17] sensitivity.  

 

Figure 5. WGM spectral shift versus RH change of 1-6 cycle of 2.25% wt./vol Agarose coated on 100 µm 

microsphere at   23 °C 

A physical explanation for why sensitivity increases with the number of coating cycles is that when the Agarose layer 

thickness increases, a greater proportion of the light energy is contained in the polymer and thus the change in the 

polymer’s RI (na) in response to changing RH leads to a higher RH sensitivity for the micro resonator. However, as the 

thickness of the polymer layer increases, the larger material absorption loss in the Agarose compared to silica should also 

result in a decrease of the Q factor, which can be understood as follows. For a relatively large silica sphere coated with an 

Agarose layer which has a smooth surface and assuming an absence of impurities in the Agarose that could increase losses, 

the quality factor mainly depends on the absorption loss within the resonator material [3], which can be expressed as in 

Eq.(2). 

                                                                   
�

���
= �

����	
	�����
+ �

����	
�����	�
                                                (2) 

where 1/(Qabs)silica and 1/(Qabs)agarose denote the material absorption loss within the silica microsphere and the Agarose 

layer, respectively. The absorption limited Q factor can be calculated as (Qabs)silica =2πns/λRαs and (Qabs)agarose =2πna/λRαa, 

where αs, ns and αa, na are the optical attenuation coefficients per unit length and the refractive indices of silica and Agarose 

layer respectively. From Eq (2), as the Q factor of the coating decreases as it gets thicker, because of the larger material 

absorption loss in the Agarose compared to silica, the coating Q begins to dominate the overall Q-factor, in effect the total 

Q factor is mainly determined by the large absorption loss in the polymer and thus for the thicknesses typically created by 

dip coating, the overall Q can be approximated by Q =2πna/λRαa. 

To verify that increasing the number of coating cycles will decrease the Q, we carried out a series of experiments for a 

silica microsphere with a fixed diameter (100 µm) which was coated with 2.25 wt./vol.% Agarose gel applied multiple 

times through repeated coating cycles, forming coatings with progressively larger thickness values. The WGM spectra of 

the coated sphere were recorded after one- ,two- ,three- ,four-, five and six coating cycles respectively using the same 

setup and the same tapered fiber at a constant temperature (23±0.4°C) and humidity(66%RH).The spectra were further 

analyzed to estimate the corresponding Q-factors, by calculating as Q=λres/∆λFWHM, where λres is the resonance wavelength 

and ∆λFWHM is the FWHM of the resonant lobe calculated by fitting the resonance dip with Lorentz equations illustrated 

in Fig. 6 (a, b, c). As expected the Q factor decreases as the number of coating cycles increases.  

  



 

 
 

 

 

   
 

Figure 6. Experimental spectra and Lorentzian fitting for a 100µm diameter microsphere coated With  2.25% 

Agarose hydrogel: (a) without a coating;  (b) after one coating cycle; (c) after 5 coating cycles. 

 
Fig 7 summarises the impact of the number of coating cycles on the Q factor and on the sensitivity. The Q factor gets 

smaller as the number of cycles increases while the sensitivity increases with the number of coating cycles. The maximum 

sensitivity in our experiments was observed for the sensor coated six times and was estimated at 518 pm/%RH which is 

significantly higher than that of 10 pm/%RH for the sensor with a single coating as illustrated in Fig 8. 

 

 
                   

Figure 7. Q-factor and estimated RH sensitivity for the 100 µm diameter microsphere with   a different  number 

of Agarose  coating layers 

 

 

The detection limit (DL) is the critical parameter to quantify the device sensing capability. The detection limit represents 

the smallest measurable physical parameter change and it can be expressed as [18]: 

 

                                                                   �� = �

�
                                                                                             (3) 

 

where � is the resolution of the sensor and S is the sensor sensitivity. Large Q-factor values may result in poorer detection 

limit values, due to  the increased temperature sensitivity, while low Q-factors are typically limited by amplitude noise 

and spectral resolution [18]. Considering all the factors, � can be calculated as,  

 

                                                        					� = 3 × ���� + ��� + ����                                                               (4) 

 

where ��,	��,	��� represent the standard deviations associated with amplitude noise, temperature and detector spectral 

resolution, respectively. We have calculated the the detection limit of 100 µm microsphere coated with a 1st cycle and a 

5th cycle of Agarose layer using the same procedure described detailed in a previous paper [18]. The parameters and 

resulting DLs are compared in the Table 1. This assumes the noise level of the system is 60 dB, the spectral resolution of  

 



 

 
 

 

our spectrum analyzer is 10±0.03pm and the standard deviation due to temperature stabilization is 10 fm. 

 
Table 1. comparision the detection limit of two different coating cycles of 2.25% wt./vol. Agarose layer  

onto 100 µm microsphere  

 

 One of coating cycle  Five coating cycles 

Q-factor 4.64x104 3.13x103 

RH sensitivity (pm/%RH) 10 206.32 

Standard deviation of amplitude noise(��
 0.23358pm 3.4848 

Standard deviation of temperature stabilization 

(��
 
0.010pm 0.010pm 

Standard deviation of spectral resolution (���
 0.2236 pm 0.2236 pm 

 Total R 0.97052 pm 10.4759 pm 

Detection Limit (DL) 9.7×10-2 %RH 5.8×10-2 %RH 

 

To investigate the stability and repeatablity of the sensor, the humidity response of a 171 µm diameter coated microsphere 

was measured twice, but with a week long time gap between the measurmement, with the same temperature and same 

testing parameters without disturbing the setup inside the chamber. The sensor proved stable and repeatable between the 

two measurements with a small fluctuation as shown in Fig 8.  

 

 
 

Figure 8. Relative humidity responses of the sensor, measurements recorded seven days apart for a 

171 µm diameter microsphere; 
 

The hysteresis characteristics using data from humidification-dehumidification cycle for a first, second and third cycle of 

2.25 wt./vol.%Agarose coating on a 100 µm diameter microsphere was studied. The swelling rate of Agarose polymer  

 

 
Figure 9. Studies of the sensor hysteresis: humidity response for the 100 µm microspheres coated with 2.25% wt./vol. 

(a) 1st coating cycle (b) 2nd coating cycle, (c) 3rd coating cycle of Agarose concentration coatings during an RH 

increase-decrease cycle at 23°C. 

 

 



 

 
 

 

depends on the thickness of the layer. Lower thickness tends to high rate of swelling and de-swelling. As the thickness of 

Agarose layer increases, it takes more time to desorb water molecules compared to a thinner layer, leading to in increase 

in hystereis, which is experimentally proven in Fig.9 (a, b & c). 

 

Finally, to investigate the effect of temperature on the RH sensor performance, the humidity in the chamber was set to a 

constant value of 31% RH. The temperature was then gradually raised from 16 °C to 24°C. The wavelength shift of the 

WGM spectrum with temperature is shown in Fig. 10. It can be noted that the temperature sensitivity of the sensor is small 

compared to its RH sensitivity. For a 100 µm diameter sensor coated with 2.25% of Agarose hydrogel, the temperature 

sensitivity it is estimated as ~11.3 pm/°C in the temperature range of 16 -24°C. 

 
                       

Figure 10. Resonance wavelength shift versus temperature for a 100 µm microsphere coating of one cycle of  2.25% wt./vol. 

Agarose solution at 31% RH 

 

3. CONCLUSION 

A compact relative humidity sensor based on a whispering gallery mode microresonator has been proposed and 

experimentally demonstrated. WGMs are excited in the silica microsphere dip-coated with an Agarose gel, evanescently 

coupled to a tapered fiber. A change in the refractive index of the Agarose coating arising due to changes in the surrounding 

relative humidity, which leads to a spectral shift of the WGM resonances which can be related to the RH value after a 

suitable sensor calibration. The RH sensitivity of the proposed sensor can be enhanced by applying more coating layers of 

the Agarose hydrogel. Studies of the humidity response of 1-6 cycle coating of 2.25% wt./vol. Agarose gel for a 100 µm 

diameter microsphere was experimentally investigated. The results showed that an increase in the thickness of the coating 

material results in an increase in sensitivity but also leads to a decrease in quality factor for the coated micro resonator. 

The highest sensitivity achieved in our experiments was 518 pm/% RH in the RH range from 30% to 70%. The proposed 

sensor offers the advantages being very compact in nature, whilst also demonstrating low hysteresis, good repeatability 

and a relatively low cross sensitivity to temperature.  
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