19,072 research outputs found

    Supersymmetry and the AdS Higgs Phenomenon

    Full text link
    We examine the AdS Higgs phenomenon for spin-1 fields, and demonstrate that graviphotons pick up a dynamically generated mass in AdS_4, once matter boundary conditions are relaxed. We perform an explicit one-loop calculation of the graviphoton mass, and compare this result with the mass generated for the graviton in AdS. In this manner, we obtain a condition for unbroken supersymmetry. With this condition, we examine both N=2 and N=4 gauged supergravities coupled to matter multiplets, and find that for both cases the ratio between dynamically generated graviton and graviphoton masses is consistent with unbroken supersymmetry.Comment: 12 pages, JHEP forma

    Local optical field variation in the neighborhood of a semiconductor micrograting

    Full text link
    The local optical field of a semiconductor micrograting (GaAs, 10x10 micro m) is recorded in the middle field region using an optical scanning probe in collection mode at constant height. The recorded image shows the micro-grating with high contrast and a displaced diffraction image. The finite penetration depth of the light leads to a reduced edge resolution in the direction to the illuminating beam direction while the edge contrast in perpendicular direction remains high (~100nm). We use the discrete dipole model to calculate the local optical field to show how the displacement of the diffraction image increases with increasing distance from the surface.Comment: 12 pages, 3 figure

    Helium recombination spectra as temperature diagnostics for planetary nebulae

    Full text link
    Electron temperatures derived from the \ion{He}{1} recombination line ratios, designated TeT_{\rm e}(\ion{He}{1}), are presented for 48 planetary nebulae (PNe). We study the effect that temperature fluctuations inside nebulae have on the TeT_{\rm e}(\ion{He}{1}) value. We show that a comparison between TeT_{\rm e}(\ion{He}{1}) and the electron temperature derived from the Balmer jump of the \ion{H}{1} recombination spectrum, designated TeT_{\rm e}(\ion{H}{1}), provides an opportunity to discriminate between the paradigms of a chemically homogeneous plasma with temperature and density variations, and a two-abundance nebular model with hydrogen-deficient material embedded in diffuse gas of a ``normal'' chemical composition (i.e. \sim solar), as the possible causes of the dichotomy between the abundances that are deduced from collisionally excited lines to those deduced from recombination lines. We find that TeT_{\rm e}(\ion{He}{1}) values are significantly lower than TeT_{\rm e}(\ion{H}{1}) values, with an average difference of <Te<T_{\rm e}(\ion{H}{1})-TeT_{\rm e}(\ion{He}{1})>=4000>=4000 K. The result is consistent with the expectation of the two-abundance nebular model but is opposite to the prediction of the scenarios of temperature fluctuations and/or density inhomogeneities. From the observed difference between TeT_{\rm e}(\ion{He}{1}) and TeT_{\rm e}(\ion{H}{1}), we estimate that the filling factor ofhydrogen-deficient components has a typical value of 10410^{-4}. In spite of its small mass, the existence of hydrogen-deficient inclusions may potentially have a profound effect in enhancing the intensities of \ion{He}{1} recombination lines and thereby lead to apparently overestimated helium abundances for PNe.Comment: 27 pages, 7 figures, accepted for publication in MNRA

    Decomposition Methods for Large Scale LP Decoding

    Full text link
    When binary linear error-correcting codes are used over symmetric channels, a relaxed version of the maximum likelihood decoding problem can be stated as a linear program (LP). This LP decoder can be used to decode error-correcting codes at bit-error-rates comparable to state-of-the-art belief propagation (BP) decoders, but with significantly stronger theoretical guarantees. However, LP decoding when implemented with standard LP solvers does not easily scale to the block lengths of modern error correcting codes. In this paper we draw on decomposition methods from optimization theory, specifically the Alternating Directions Method of Multipliers (ADMM), to develop efficient distributed algorithms for LP decoding. The key enabling technical result is a "two-slice" characterization of the geometry of the parity polytope, which is the convex hull of all codewords of a single parity check code. This new characterization simplifies the representation of points in the polytope. Using this simplification, we develop an efficient algorithm for Euclidean norm projection onto the parity polytope. This projection is required by ADMM and allows us to use LP decoding, with all its theoretical guarantees, to decode large-scale error correcting codes efficiently. We present numerical results for LDPC codes of lengths more than 1000. The waterfall region of LP decoding is seen to initiate at a slightly higher signal-to-noise ratio than for sum-product BP, however an error floor is not observed for LP decoding, which is not the case for BP. Our implementation of LP decoding using ADMM executes as fast as our baseline sum-product BP decoder, is fully parallelizable, and can be seen to implement a type of message-passing with a particularly simple schedule.Comment: 35 pages, 11 figures. An early version of this work appeared at the 49th Annual Allerton Conference, September 2011. This version to appear in IEEE Transactions on Information Theor

    Non-diagonal Charged Lepton Yukawa Matrix: Effects on Neutrino Mixing in Supersymmetry

    Full text link
    Generally the diagonalization of the mass matrix of the charged leptons is a part of the neutrino UPMNS matrix. However, usually this contribution is ignored by assuming a diagonal mass matrix for charged leptons. In this letter we test this common assumption in the context of neutrino physics. Our analytical and numerical results for two supersymmetric models reveal that such a simplification is not justified. Especially for the solar and reactor mixing angles important modifications are found.Comment: 22 pages 8 figure

    Disks in a narrow channel jammed by gravity and centrifuge: profiles of pressure, mass density and entropy density

    Get PDF
    This work investigates jammed granular matter under conditions that produce heterogeneous mass distributions on a mesoscopic scale. We consider a system of identical disks that are confined to a narrow channel, open at one end and closed off at the other end. The disks are jammed by the local pressure in a gravitational field or centrifuge. All surfaces are hard and frictionless. We calculate the profiles of pressure, mass density, and entropy density on a mesoscopic length scale under the assumption that the jammed states are produced by random agitations of uniform intensity along the channel. These profiles exhibit trends and features governed by the balancing of position-dependent forces and potential energies. The analysis employs a method of configurational statistics that uses interlinking two-disk tiles as the fundamental degrees of freedom. Configurational statistics weighs the probabilities of tiles according to competing potential energies associated with gravity and centrifugation. Amendments account for the effects of the marginal stability of some tiles due to competing forces.Comment: 20 pages, 10 figure
    corecore