812 research outputs found

    Fusion at deep subbarrier energies: potential inversion revisited

    Get PDF
    For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the 16^{16}O +144^{144}Sm and 16^{16}O +208^{208}Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.Comment: 8 pages, 5 figures. Uses aipxfm.sty. A talk given at the FUSION08: New Aspects of Heavy Ion Collisions Near the Coulomb Barrier, September 22-26, 2008, Chicago, US

    Exact Stochastic Mean-Field dynamics

    Full text link
    The exact evolution of a system coupled to a complex environment can be described by a stochastic mean-field evolution of the reduced system density. The formalism developed in Ref. [D.Lacroix, Phys. Rev. E77, 041126 (2008)] is illustrated in the Caldeira-Leggett model where a harmonic oscillator is coupled to a bath of harmonic oscillators. Similar exact reformulation could be used to extend mean-field transport theories in Many-body systems and incorporate two-body correlations beyond the mean-field one. The connection between open quantum system and closed many-body problem is discussed.Comment: Proceedings series of Proceedings of "FUSION08: New Aspects of Heavy Ion Collisions near the Coulomb Barrier", September 22-26, 2008, Chicago, US

    Extraction of nucleus-nucleus potential and energy dissipation from dynamical mean-field theory

    Full text link
    Nucleus-nucleus interaction potentials in heavy-ion fusion reactions are extracted from the microscopic time-dependent Hartree-Fock theory. When the center-of-mass energy is much higher than the Coulomb barrier energy, extracted potentials identify with the frozen density approximation. As the center-of-mass energy decreases to the Coulomb barrier energy, potentials become energy dependent. This dependence indicates dynamical reorganization of internal degrees of freedom and leads to a reduction of the "apparent" barrier. Including this effect leads to the Coulomb barrier energy very close to experimental one. Aspects of one-body energy dissipation extracted from the mean-field theory are discussed.Comment: 6 pages, 5 figures. Uses aipxfm.sty. A talk given at the FUSION08: New Aspects of Heavy Ion Collisions Near the Coulomb Barrier, September 22-26, 2008, Chicago, US

    Ambiguity of gamma-ray tracking of "two-interaction" events

    Full text link
    Tracking of gamma-ray interactions in germanium detectors can allow reconstruction of the photon paths, and is useful for many applications. Scrutiny of the kinematics and geometry of gamma rays which are Compton scattered only once prior to full absorption reveals that there are cases where even perfect spatial and energy resolution cannot resolve the true interaction sequence and consequently gamma-ray tracks cannot be reconstructed. The photon energy range where this ambiguity exists is from 255 keV to around 700 keV. This is a region of importance for nuclear structure research where two-point interactions are probable.Comment: 8 pages, 2 figure

    Transfer and breakup of light weakly-bound nuclei

    Get PDF

    Coupled-Channels Approach for Dissipative Quantum Dynamics in Near-Barrier Collisions

    Get PDF
    A novel quantum dynamical model based on the dissipative quantum dynamics of open quantum systems is presented. It allows the treatment of both deep-inelastic processes and quantum tunneling (fusion) within a fully quantum mechanical coupled-channels approach. Model calculations show the transition from pure state (coherent) to mixed state (decoherent and dissipative) dynamics during a near-barrier nuclear collision. Energy dissipation, due to irreversible decay of giant-dipole excitations of the interacting nuclei, results in hindrance of quantum tunneling.Comment: 8 pages, 4 figures, Invited talk by A. Diaz-Torres at the FUSION08 Conference, Chicago, September 22-26, 2008, To appear in AIP Conference Proceeding

    Mass Distributions Beyond TDHF

    Full text link
    The mass distributions for giant dipole resonances in 32S and 132Sn decaying through particle emission and for deep-inelastic collisions between 16O nuclei have been investigated by implementing the Balian-Veneroni variational technique based upon a three-dimensional time-dependent Hartree-Fock code with realistic Skyrme interactions. The mass distributions obtained have been shown to be significantly larger than the standard TDHF results.Comment: 6 pages, 2 figures, Based on talk by J. M. A. Broomfield at the FUSION08 Conference, Chicago, September 22-26, 2008. Conference proceedings to be published by AI

    How magic is the magic 68Ni nucleus?

    Get PDF
    We calculate the B(E2) strength in 68Ni and other nickel isotopes using several theoretical approaches. We find that in 68Ni the gamma transition to the first 2+ state exhausts only a fraction of the total B(E2) strength, which is mainly collected in excited states around 5 MeV. This effect is sensitive to the energy splitting between the fp shell and the g_{9/2}orbital. We argue that the small experimental B(E2) value is not strong evidence for the double-magic character of 68Ni.Comment: 4 pages, 4 figure

    Insights into Nuclear Clusters in 28^{28}Si via Resonant Radiative Capture Measurements

    No full text
    International audienceThe heavyion radiative capture reaction 12C(16O,γ\gamma)28Si has been studied at three energies on( ELab = 20.0 and 21.2 MeV) and off( ELab = 20.7 MeV) resonance at Triumf (Vancouver) using the stateoftheart Dragon 0° spectrometer and its very efficient associated BGO γ\gamma array. Intermediate states around Ex = 11.5 MeV, carrying a large part of the resonant flux have been observed for the first time in this system. The nature of those doorway states is discussed in terms of recently calculated cluster bands in 28Si. The results are compared to a recent similar investigation of the 12C(12C,γ\gamma)24Mg reaction
    • 

    corecore