38 research outputs found

    Experimental investigation of crossflow jet mixing in a rectangular duct

    Get PDF
    An experimental investigation of the mixing of nonreacting opposed rows of jets injected normal to a confined rectangular crossflow has been conducted. Planar Mie-scattering was used to measure the time-average concentration distribution of the jet fluid in planes perpendicular to the duct axis. The mixing effectiveness of round orifice injectors was measured as a function of orifice spacing and orifice diameter. Mixing effectiveness was determined using a spatial unmixedness parameter based on the variance of mean jet concentration distributions. Optimum mixing was obtained when the spacing-to-duct height ratio was inversely proportional to the square root of the jet-to-mainstream momentum-flux ratio. For opposed rows of round holes with centerlines inline, mixing was similar for blockages up to 75 percent. Lower levels of unmixedness were obtained as a function of downstream location when axial injection length was minimized. Mixing may be enhanced if orifice centerlines of opposed rows are staggered, but note that blockage must be less than 50 percent for this configuration

    Experimental study of cross flow mixing in cylindrical and rectangular ducts

    Get PDF
    An experimental investigation of non-reacting cross flow jet injection and mixing in cylindrical and rectangular ducts has been conducted with application to a low emissions combustor. Quantitative measurement of injectant concentration distributions perpendicular to the duct axis were obtained by planar digital imaging of the Mie-scattered light from an aerosol seed mixed with the injectant. The flowfield unmixedness was evaluated using (1) a mixing parameter derived from the ratio of the jet concentration fluctuations to the fully mixed concentration, and (2) probability density functions of the concentration distributions. Mixing rate was measured for 45 degree slant slot and round orifice injectors

    Experimental study of cross-stream mixing in a cylindrical duct

    Get PDF
    An experimental investigation of cross stream injection and mixing was conducted with application to a low NO sub x combustor for the High Speed Civil Transport (HSCT). Mixing in a cylindrical chamber was studied for transverse injection from slanted slot and round orifice injectors. Momentum ratio, density ratio, and number were studied. Quantitative measurement of injectant concentration distributions were obtained by planar digital imaging of the Mie scattered light from an aerosol seed uniformly mixed with the injectant. The unmixedness, defined as the ratio of the r.m.s. concentration fluctuation to mean concentration in a plane perpendicular to the main flow direction, was found to be primarily a function of momentum ratio and injector spacing. An optimum spacing is indicated. Unmixedness is also a function of orifice size, or mass flow ratio, but the mass flow dependence can be accounted for by normalizing the unmixedness with its maximum theoretical value. The data indicate that a density ratio greater than unity retards mixing. It was found that above a certain momentum flux ratio, mixing with slanted slot injectors was better than with round hole injectors

    Experimental Study of Cross-Stream Mixing in a Rectangular Duct

    Get PDF
    An experimental investigation of non-reacting cross-stream jet injection and mixing in a rectangular duct was conducted for application in a low emissions combustor. Planar digital imaging was used to measure concentration distributions in planes perpendicular to the duct axis. Mixing rate was measured for 45 deg slanted slot and round orifice injectors. Five areas of inquiry are discussed: (1) mixing improves continuously with increasing momentum-flux ratio; (2) given a momentum-flux ratio, there is an optimum, orifice spacing; (3) mixing is more dependent on injector geometry than mass flow ratio; (4) mixing is influenced by relative slot orientation; and (5) jet structure is different for round holes and slanted slots injectors. The utility of acquiring multipoint fluctuating properties of the flow field is also demonstrated

    Effects of Initial Conditions on a Single Jet in Crossflow

    Get PDF
    An experimental investigation of the effects of jet inlet flow conditions has been conducted for the isothermal mixing of a single jet injected into a crossflow. Jet penetration and mixing was studied using planar Mie scattering to measure time-averaged jet mixture fraction distributions. The effects of 'passive' control methods such as jet 'tabs' and jet swirl are reported. Mixing effectiveness, determined using a spatial unmixedness parameter based on the variance of the mean jet concentration distributions, was compared to a baseline case of a round jet injected into a uniform crossflow. All results are compared at a jet-to-mainstream momentum-flux ratio of 8.5. In the near-field, the mixing rates are similar to, or less than, the baseline configuration using this measure of mixedness. None of the tested configurations appear to significantly augment mixing within a downstream distance of 3 diameters of an equivalent-area round orifice

    Mixing characteristics of directly opposed rows of jets injected normal to a crossflow in a rectangular duct

    Get PDF
    An experimental investigation of the mixing of nonreacting opposed rows of inline jets injected perpendicular to a uniform crossflow has been conducted in a rectangular duct. Planar Mie-scattering was used to measure the time-average concentration distribution of the jet fluid in planes perpendicular to the duct axis. Orifice configurations with geometric blockages ranging from 0.59 to 0.89 had similar mixing performance when compared at one-half duct height downstream of injection. Blockage was varied by changing the orifice aspect ratio from 1-to-1 to 1-to-1.5 while maintaining orifice spacing-to-duct height (S/H) at 0.425, jet-to-mainstream mass flow ratio (MR) at 2.0, and jet-to-mainstream momentum-flux ratio (J) at 48. The result indicates that the design correlating expression (at MR = 2) for optimum in line mixing of 2.5 approximately equal to (S/H)(square root of J) is independent of the Webb between adjacent orifices and therefore independent of orifice width. Experimental and numerical results for an orifice aspect ratio 1-to-1 case were in good agreement. The results of a comparison of inline 45 degrees slanted slot and round orifice configuration indicate that in order to obtain equivalent mean concentration distributions at the same J it is necessary to use a smaller S/H for the round orifice configuration. Conclusions about the performance of various orifice shapes can only be obtained from comparison of optimized configurations. Inline jets with different momentum-flux ratios on opposite sides were compared at a constant mass flow ratio. The orifice spacing chosen was previously found to be an optimum configuration when opposing values of J were equal and also an optimum for single side injection. Experimental and empirical results were in good agreement

    Effects of Inlet Flow Conditions on Crossflow Jet Mixing

    Get PDF
    An experimental investigation of the effects of mainstream turbulence, mainstream swirl and non-symmetric mass addition has been conducted for the isothermal mixing of multiple jets injected into a confined rectangular crossflow. Jet penetration and mixing in the near field was studied using planar Mie scattering to measure time-averaged mixture fraction distributions. Orifice configurations were used that were optimized for mixing performance based on previous experimental and computational results for a homogeneous approach flow. Mixing effectiveness, determined using a spatial unmixedness parameter based on the variance of the mean jet concentration distributions, was found to be minimally affected by free-stream turbulence but significantly influenced by the addition of swirl to the mainstream. The results for non-symmetric mass addition indicate that the concentration distribution of the flowfield can be tailored if desired

    Crossflow Mixing of Noncircular Jets

    Get PDF
    An experimental investigation has been conducted of the isothermal mixing of a turbulent jet injected perpendicular to a uniform crossflow through several different types of sharp-edged orifices. Jet penetration and mixing was studied using planar Mie scattering to measure time-averaged mixture fraction distributions of circular, square, elliptical, and rectangular orifices of equal geometric area injected into a constant velocity crossflow. Hot-wire anemometry was also used to measure streamwise turbulence intensity distributions at several downstream planes. Mixing effectiveness was determined using (1) a spatial unmixedness parameter based on the variance of the mean jet concentration distributions and (2) by direct comparison of the planar distributions of concentration and of turbulence intensity. No significant difference in mixing performance was observed for the six configurations based on comparison of the mean properties

    Mixing of Multiple Jets With a Confined Subsonic Crossflow

    Get PDF
    This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex 3-D flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the offices investigated were often very large (jet-to-mainstream mass-flow ratio greater than 1 and the ratio of orifices-area-to-mainstream-cross-sectional-area up to 0.5 respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations

    Flow Coupling Effects in Jet-in-Crossflow Flowfields

    Get PDF
    The combustor designer is typically required to design liner orifices that effectively mix air jets with crossflow effluent. CFD combustor analysis is typically used in the design process; however the jets are usually assumed to enter the combustor with a uniform velocity and turbulence profile. The jet-mainstream flow coupling is usually neglected because of the computational expense. This CFD study was performed to understand the effect of jet-mainstream flow coupling, and to assess the accuracy of jet boundary conditions that are commonly used in combustor internal calculations. A case representative of a plenum-fed quick-mix section of a Rich Burn/Quick Mix/Lean Burn combustor (i.e. a jet-mainstream mass-flow ratio of about 3 and a jet-mainstream momentum-flux ratio of about 30) was investigated. This case showed that the jet velocity entering the combustor was very non-uniform, with a low normal velocity at the leading edge of the orifice and a high normal velocity at the trailing edge of the orifice. Three different combustor-only cases were analyzed with uniform inlet jet profile. None of the cases matched the plenum-fed calculations. To assess liner thickness effects, a thin-walled case was also analyzed. The CFD analysis showed the thin-walled jets had more penetration than the thick-walled jets
    corecore