Effects of Inlet Flow Conditions on Crossflow Jet Mixing

Abstract

An experimental investigation of the effects of mainstream turbulence, mainstream swirl and non-symmetric mass addition has been conducted for the isothermal mixing of multiple jets injected into a confined rectangular crossflow. Jet penetration and mixing in the near field was studied using planar Mie scattering to measure time-averaged mixture fraction distributions. Orifice configurations were used that were optimized for mixing performance based on previous experimental and computational results for a homogeneous approach flow. Mixing effectiveness, determined using a spatial unmixedness parameter based on the variance of the mean jet concentration distributions, was found to be minimally affected by free-stream turbulence but significantly influenced by the addition of swirl to the mainstream. The results for non-symmetric mass addition indicate that the concentration distribution of the flowfield can be tailored if desired

    Similar works