129 research outputs found

    Modeling individual growth reveals decreasing gray whale body length and correlations with ocean climate indices at multiple scales

    Get PDF
    Funding: This work was supported by the Office of Naval Research Marine Mammals and Biology Program (grant number: N00014-20-1-2760); the NOAA National Marine Fisheries Service Office of Science and Technology Ocean Acoustics Program (2016 and 2017) (grant number: 50-27); the Oregon State University Marine Mammal Institute; and Oregon Sea Grant Program Development funds (2018) (grant number: RECO- 40-PD).Changes in body size have been documented across taxa in response to human activities and climate change. Body size influences many aspects of an individual's physiology, behavior, and ecology, ultimately affecting life history performance and resilience to stressors. In this study, we developed an analytical approach to model individual growth patterns using aerial imagery collected via drones, which can be used to investigate shifts in body size in a population and the associated drivers. We applied the method to a large morphological dataset of gray whales (Eschrichtius robustus) using a distinct foraging ground along the NE Pacific coast, and found that the asymptotic length of these whales has declined since around the year 2000 at an average rate of 0.05–0.12 m/y. The decline has been stronger in females, which are estimated to be now comparable in size to males, minimizing sexual dimorphism. We show that the decline in asymptotic length is correlated with two oceanographic metrics acting as proxies of habitat quality at different scales: the mean Pacific Decadal Oscillation index, and the mean ratio between upwelling intensity in a season and the number of relaxation events. These results suggest that the decline in gray whale body size may represent a plastic response to changing environmental conditions. Decreasing body size could have cascading effects on the population's demography, ability to adjust to environmental changes, and ecological influence on the structure of their community. This finding adds to the mounting evidence that body size is shrinking in several marine populations in association with climate change and other anthropogenic stressors. Our modeling approach is broadly applicable across multiple systems where morphological data on megafauna are collected using drones.Peer reviewe

    Bubble blasts! An adaptation for buoyancy regulation in shallow foraging gray whales

    Get PDF
    Funding: Data collection was supported by the NOAA National Marine Fisheries Service Office of Science and Technology Ocean Acoustics Program [2016 and 2017; 50-27], the Oregon Sea Grant Program Development funds [2018; RECO-40-PD], the Oregon State University Marine Mammal Institute [2019], and the Office of Naval Research Marine Mammals and Biology program [2020–2022; #N00014-20-1-2760].Foraging efficiency is key to animal fitness. Consequently, animals evolved a variety of kinematic, morphological, physiological, and behavioral adaptations for efficient locomotion to reduce energy expenditure while moving to find, capture, and consume prey. Often suited to specific habitat and prey types, these adaptations correspond to the terrain or substrate the animal moves through. In aquatic systems, adaptations focus on overcoming drag, buoyancy, and hydrostatic forces. Buoyancy both benefits and hinders diving animals; in particular, shallow divers constantly contend with the costs of overcoming buoyancy to dive and maintain position. Pacific Coast Feeding Group (PCFG) gray whales forage in shallow habitats where they work against buoyancy to dive and feed using various foraging tactics. Bubble blasts (underwater exhalations) have been observed during several foraging tactics performed by PCFG whales. As exhalations aid buoyancy regulation in other diving animals, we hypothesize that bubble blasts are performed by longer, more buoyant whales in shallower water and that bubble blasts increase dive duration while accounting for size and tactic. We test our hypotheses using Bayesian linear mixed effects models and a 7-year dataset of drone footage containing concurrent individual morphological and behavioral data. We find that while headstanding – a stationary, head-down tactic – bubble blasts are performed by longer, more buoyant whales and extend the dive duration, whereas whales using forward-swimming tactics are less likely to bubble blast. Our results suggest that PCFG gray whales may use bubble blasts as a behavioral adaption to mitigate the cost of energetically expensive tactics in their shallow habitat foraging niche.Peer reviewe

    Growing into it : evidence of an ontogenetic shift in grey whale use of foraging tactics

    Get PDF
    Funding: Alexa Kownacki Endowed Research Award Fund. Data collection was supported by the NOAA National Marine Fisheries Service Office of Science and Technology Ocean Acoustics Program (2016 and 2017; 50-27), the Oregon Sea Grant Program Development funds (2018; RECO-40-PD), the Oregon State University Marine Mammal Institute (2019) and the Office of Naval Research Marine Mammals and Biology program (2020e2022; N00014-20-1-2760).Individual specialization may occur relative to diet, behaviour or spatial distribution, potentially leading to differential resource and space use within a population. While specializations have been documented across many animal populations, the underlaying causes of individual specialization (e.g. morphology, age or sex) are not always identified. Causes of specialization can be especially challenging to uncover for large, long-lived marine animals. We used a Bayesian multilevel, multinomial logistic regression model to study the relationships between grey whale, Eschrichtius robustus, use of foraging tactics and morphology (body length and condition), while accounting for habitat characteristics and individual variation in tactic use. The model was informed by a 7-year longitudinal data set of concurrent morphology and foraging behaviour collected using drones. We found evidence of an ontogenetic shift in the use of foraging tactics associated with body length (a proxy for age). Individual specialization in behaviour was also associated with water depth and habitat. After accounting for the effects of these covariates, there was some residual individual level variation in the use of different foraging tactics. Our findings demonstrate variation in resource and habitat use within a baleen whale population at the individual level relative to body length and habitat, suggesting that individual spatial distribution and access to prey may vary by age class. Our results can be applied to investigate whether juveniles and adults differ in their foraging success and resilience to stressors.Peer reviewe

    Japanese quails (Coturnix Japonica) show keel bone damage during the laying period—a radiography study

    Get PDF
    Keel bone damage is an important welfare issue in laying hens and can occur with a high prevalence of up to 100% of hens within one flock. Affected hens suffer from pain. Although multiple factors contribute to the prevalence and severity of keel bone damage, selection for high laying performance appears to play a key role. With up to 300 eggs/year, Japanese quails show a high laying performance, too, and, thus, may also show keel bone damage. However, to our knowledge, there are no scientific results on keel bone damage in Japanese quails to date. Therefore, the aim of this study was to assess whether keel bone fractures and deviations occur in Japanese quails and to obtain more detailed information about the development of their keel bone during the production cycle. A group of 51 female quails were radiographed at 8, 10, 15, 19, and 23 weeks of age. The X-rays were used to detect fractures and deviations and to measure the lateral surface area, length, and radiographic density of the keel bone. In addition, the length of the caudal cartilaginous part of the keel bone was measured to learn more about the progress of ossification. At 23 weeks of age, quails were euthanized and their macerated keel bones assessed for fractures and deviations. Both keel bone deviations and keel bone fractures were detected in the Japanese quails. In the 23rd week of age, 82% of the quails had a deviated keel bone as assessed after maceration. Furthermore, there was a decrease in radiographic density, lateral surface area, and length of the keel bone between weeks of age 8 and 19. This could indicate a general loss of bone substance and/or demineralization of the keel bone. Our study shows that keel bone damage is not only a problem in laying hens but also affects female Japanese quails

    Assessment of a non-invasive approach to pregnancy diagnosis in gray whales through drone-based photogrammetry and faecal hormone analysis

    Get PDF
    This project was supported by the NOAA National Marine Fisheries Service Office of Science and Technology, the Office of Naval Research Marine Mammals and Biology Program (no. N00014-20-1-2760), the Oregon State University Marine Mammal Institute and Oregon Sea Grant.Knowledge of baleen whales’ reproductive physiology is limited and requires long-term individual-based studies and innovative tools. We used 6 years of individual-level data on the Pacific Coast Feeding Group gray whales to evaluate the utility of faecal progesterone immunoassays and drone-based photogrammetry for pregnancy diagnosis. We explored the variability in faecal progesterone metabolites and body morphology relative to observed reproductive status and estimated the pregnancy probability for mature females of unknown reproductive status using normal mixture models. Individual females had higher faecal progesterone concentrations when pregnant than when presumed nonpregnant. Yet, at the population level, high overlap and variability in progesterone metabolite concentrations occurred between pregnant and non-pregnant groups, limiting this metric for accurate pregnancy diagnosis in gray whales. Alternatively, body width at 50% of the total body length (W50) correctly discriminated pregnant from non-pregnant females at individual and population levels, with high accuracy. Application of the model using W50 metric to mature females of unknown pregnancy status identified eight additional pregnancies with high confidence. Our findings highlight the utility of drone-based photogrammetry to non-invasively diagnose pregnancy in this group of gray whales, and the potential for improved data on reproductive rates for population management of baleen whales generally.Publisher PDFPeer reviewe

    Zoop to poop: assessment of microparticle loads in gray whale zooplankton prey and fecal matter reveal high daily consumption rates

    Get PDF
    The ocean continues to be a sink for microparticle (MP) pollution, which includes microplastics and other anthropogenic debris. While documentation of MP in marine systems is now common, we lack information on rates of MP ingestion by baleen whales and their prey. We collected and assessed MP loads in zooplankton prey and fecal samples of gray whales (Eschrichtius robustus) feeding in coastal Oregon, USA and produced the first estimates of baleen whale MP consumption rates from empirical data of zooplankton MP loads (i.e., not modeled). All zooplankton species examined were documented gray whale prey items (Atylus tridens, Holmesimysis sculpta, Neomysis rayii) and contained an average of 4 MP per gram of tissue, mostly of the microfiber morphotype. We extrapolated MP loads in zooplankton prey to estimate the daily MP consumption rates of pregnant and lactating gray whales, which ranged between 6.5 and 21 million MP/day. However, these estimates do not account for MP ingested from ambient water or benthic sediments, which may be high for gray whales given their benthic foraging strategy. We also assessed MP loads in fecal samples from gray whales feeding in the same spatio-temporal area and detected MP in all samples examined, which included microfibers and significantly larger morphotypes than in the zooplankton. We theorize that gray whales ingest MP via both indirect trophic transfer from their zooplankton prey and directly through indiscriminate consumption of ambient MPs when foraging benthically where they consume larger MP morphotypes that have sunk and accumulated on the seafloor. Hence, our estimated daily MP consumption rates for gray whales are likely conservative because they are only based on indirect MP ingestion via prey. Our results improve the understanding of MP loads in marine ecosystems and highlight the need to assess the health impacts of MP consumption on zooplankton and baleen whales, particularly due to the predominance of microfibers in samples, which may be more toxic and difficult to excrete than other MP types. Furthermore, the high estimated rates of MP consumption by gray whales highlights the need to assess health consequences to individuals and subsequent scaled-up effects on population vital rates

    Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia

    Full text link
    X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4–dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8–207.8, P < 0.001). The patients’ susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia
    • …
    corecore