25 research outputs found

    The same ELA class II risk factors confer equine insect bite hypersensitivity in two distinct populations

    Get PDF
    Insect bite hypersensitivity (IBH) is a chronic allergic dermatitis common in horses. Affected horses mainly react against antigens present in the saliva from the biting midges, Culicoides ssp, and occasionally black flies, Simulium ssp. Because of this insect dependency, the disease is clearly seasonal and prevalence varies between geographical locations. For two distinct horse breeds, we genotyped four microsatellite markers positioned within the MHC class II region and sequenced the highly polymorphic exons two from DRA and DRB3, respectively. Initially, 94 IBH-affected and 93 unaffected Swedish born Icelandic horses were tested for genetic association. These horses had previously been genotyped on the Illumina Equine SNP50 BeadChip, which made it possible to ensure that our study did not suffer from the effects of stratification. The second population consisted of 106 unaffected and 80 IBH-affected Exmoor ponies. We show that variants in the MHC class II region are associated with disease susceptibility (praw = 2.34 × 10−5), with the same allele (COR112:274) associated in two separate populations. In addition, we combined microsatellite and sequencing data in order to investigate the pattern of homozygosity and show that homozygosity across the entire MHC class II region is associated with a higher risk of developing IBH (p = 0.0013). To our knowledge this is the first time in any atopic dermatitis suffering species, including man, where the same risk allele has been identified in two distinct populations

    Single nucleotide polymorphisms in obesity-related genes and all-cause and cause-specific mortality: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to examine the associations between 16 specific single nucleotide polymorphisms (SNPs) in 8 obesity-related genes and overall and cause-specific mortality. We also examined the associations between the SNPs and body mass index (BMI) and change in BMI over time.</p> <p>Methods</p> <p>Data were analyzed from 9,919 individuals who participated in two large community-based cohort studies conducted in Washington County, Maryland in 1974 (CLUE I) and 1989 (CLUE II). DNA from blood collected in 1989 was genotyped for 16 SNPs in 8 obesity-related genes: monoamine oxidase A (<it>MAOA</it>), lipoprotein lipase (<it>LPL</it>), paraoxonase 1 and 2 (<it>PON1 </it>and <it>PON2</it>), leptin receptor (<it>LEPR</it>), tumor necrosis factor-α (<it>TNFα</it>), and peroxisome proliferative activated receptor-γ and -δ (<it>PPARG </it>and <it>PPARD</it>). Data on height and weight in 1989 (CLUE II baseline) and at age 21 were collected from participants at the time of blood collection. All participants were followed from 1989 to the date of death or the end of follow-up in 2005. Cox proportional hazards regression was used to obtain the relative risk (RR) estimates and 95% confidence intervals (CI) for each SNP and mortality outcomes.</p> <p>Results</p> <p>The results showed no patterns of association for the selected SNPs and the all-cause and cause-specific mortality outcomes, although statistically significant associations (p < 0.05) were observed between <it>PPARG </it>rs4684847 and all-cause mortality (CC: reference; CT: RR 0.99, 95% CI 0.89, 1.11; TT: RR 0.60, 95% CI 0.39, 0.93) and cancer-related mortality (CC: reference; CT: RR 1.01, 95% CI 0.82, 1.25; TT: RR 0.22, 95% CI 0.06, 0.90) and <it>TNFα </it>rs1799964 and cancer-related mortality (TT: reference; CT: RR 1.23, 95% CI 1.03, 1.47; CC: RR 0.83, 95% CI 0.54, 1.28). Additional analyses showed significant associations between SNPs in <it>LEPR </it>with BMI (rs1137101) and change in BMI over time (rs1045895 and rs1137101).</p> <p>Conclusion</p> <p>Findings from this cohort study suggest that the selected SNPs are not associated with overall or cause-specific death, although several <it>LEPR </it>SNPs may be related to BMI and BMI change over time.</p

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    Influence of LRP5 polymorphisms on normal variation in BMD

    No full text
    Genetic studies based on cohorts with rare and extreme bone phenotypes have shown that the LRP5 gene is an important genetic modulator of BMD. Using family-based and case-control approaches, this study examines the role of the LRP5 gene in determining normal population variation of BMD and describes significant association and suggestive linkage between LRP5 gene polymorphisms and BMD in &gt;900 individuals with a broad range of BMD
    corecore