5,686 research outputs found

    quantreg. nonpar: An R Package for performing nonparametric series quantile regression

    Get PDF
    The R package quantreg.nonpar implements nonparametric quantile regression methods to estimate and make inference on partially linear quantile models. quantreg.nonpar obtains point estimates of the conditional quantile function and its derivatives based on series approximations to the nonparametric part of the model. It also provides pointwise and uniform confidence intervals over a region of covariate values and/or quantile indices for the same functions using analytical and resampling methods. This paper serves as an introduction to the package and displays basic functionality of the functions contained within.https://arxiv.org/abs/1610.08329Published and Accepted manuscript versions

    During elections, candidates who discuss the same issues can end up confusing voters

    Get PDF
    With the 2014 mid-term elections looming ever closer, it is only a matter of time before the calls for candidates to have greater dialogue on issues begins. But is this dialogue, or ‘issue convergence’ helpful for voters? New research by Keena Lipsitz into what happens when candidates address the same issues at the same time finds that individuals hear from both candidates, they are often easily confused, especially if their level of political interest is not high

    quantreg. nonpar: An R Package for performing nonparametric series quantile regression

    Get PDF
    The R package quantreg.nonpar implements nonparametric quantile regression methods to estimate and make inference on partially linear quantile models. quantreg.nonpar obtains point estimates of the conditional quantile function and its derivatives based on series approximations to the nonparametric part of the model. It also provides pointwise and uniform confidence intervals over a region of covariate values and/or quantile indices for the same functions using analytical and resampling methods. This paper serves as an introduction to the package and displays basic functionality of the functions contained within.https://arxiv.org/abs/1610.08329Published and Accepted manuscript versions

    Emergence of Complex Dynamics in a Simple Model of Signaling Networks

    Full text link
    A variety of physical, social and biological systems generate complex fluctuations with correlations across multiple time scales. In physiologic systems, these long-range correlations are altered with disease and aging. Such correlated fluctuations in living systems have been attributed to the interaction of multiple control systems; however, the mechanisms underlying this behavior remain unknown. Here, we show that a number of distinct classes of dynamical behaviors, including correlated fluctuations characterized by 1/f1/f-scaling of their power spectra, can emerge in networks of simple signaling units. We find that under general conditions, complex dynamics can be generated by systems fulfilling two requirements: i) a ``small-world'' topology and ii) the presence of noise. Our findings support two notable conclusions: first, complex physiologic-like signals can be modeled with a minimal set of components; and second, systems fulfilling conditions (i) and (ii) are robust to some degree of degradation, i.e., they will still be able to generate 1/f1/f-dynamics

    A generalized linear mixed model for longitudinal binary data with a marginal logit link function

    Get PDF
    Longitudinal studies of a binary outcome are common in the health, social, and behavioral sciences. In general, a feature of random effects logistic regression models for longitudinal binary data is that the marginal functional form, when integrated over the distribution of the random effects, is no longer of logistic form. Recently, Wang and Louis [Biometrika 90 (2003) 765--775] proposed a random intercept model in the clustered binary data setting where the marginal model has a logistic form. An acknowledged limitation of their model is that it allows only a single random effect that varies from cluster to cluster. In this paper we propose a modification of their model to handle longitudinal data, allowing separate, but correlated, random intercepts at each measurement occasion. The proposed model allows for a flexible correlation structure among the random intercepts, where the correlations can be interpreted in terms of Kendall's τ\tau. For example, the marginal correlations among the repeated binary outcomes can decline with increasing time separation, while the model retains the property of having matching conditional and marginal logit link functions. Finally, the proposed method is used to analyze data from a longitudinal study designed to monitor cardiac abnormalities in children born to HIV-infected women.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS390 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore