425 research outputs found

    A Comparative Study on the Teaching Effects of TRIZ Courses for the Humanities

    Get PDF
    In order to test the feasibility of the curriculum system of TRIZ used in humanities and social science majors, this study will test whether it is effective to cultivate students’ creativity and to train their ability to solve problems. This study designs the randomly experimental targets in the two control groups for pretest and post-test. This study tests creative thinking and student self-evaluation questionnaire by use of the China Taiwan scholar, Wu Jingji’s design. The result indicates that the post-test, for the two groups of students, their creative thinking indicators have improved significantly. The results showed that TRIZ had a significant effect on improving students' creativity. Finally, this study has discussed the value of TRIZ Course contained in Humanities and Social Science Teaching and addressed the needs to improve

    Investigation of a New Flux-Modulated Permanent Magnet Brushless Motor for EVs

    Get PDF
    This paper presents a flux-modulated direct drive (FMDD) motor. The key is to integrate the magnetic gear with the PM motor while removing the gear inner-rotor. Hence, the proposed FMDD motor can achieve the low-speed high-torque output and high-speed compact design requirements as well as high-torque density with a simple structure. The output power equation is analytically derived. By using finite element analysis (FEA), the static characteristics of the proposed motor are obtained. Based on these characteristics, the system mathematical model can be established. Hence, the evaluation of system performances is conducted by computer simulation using the Matlab/Simulink. A prototype is designed and built for experimentation. Experimental results are given to verify the theoretical analysis and simulation

    Research progress in the role and mechanism of lactylation in diseases

    Get PDF
    Lactic acid is a product of cell respiration. After entering into cells, glucose is metabolized to pyruvate by glycolysis. When the oxygen supply is sufficient, pyruvate is converted to acetyl coenzyme A through pyruvate dehydrogenase in the mitochondrial matrix to participate in the tricarboxylic acid cycle and provide necessary energy for cells. Pyruvate is catalysed by lactate dehydrogenase in the cytoplasm to produce lactate while cells are grown under hypoxic conditions. Lactate not only provides energy for mitochondrial respiration, but also plays important roles in inflammatory responser, wound repair, memory formation and neuroprotection as well as tumor growth and metastasis and other pathophysiological processes through autocrine, paracrine, and endocrine forms, which affects the development and prognosis of diseases. Epigenetic modification regulates gene replication, transcription and translation by covalently adding or hydrolyzing functional groups on histones and DNA through related enzymes and affects the biological effects of cells. Histones are the major structural proteins of eukaryotic chromosomes. Their post-translational modifications, such as methylation and acetylation, affect their affinity with DNA, change chromatin structures, and are widely involved in regulation of gene expression. Recent studies have found that histones can undergo lactylation, which is a new epigenetic modification by adding lactate to lysine residues on histones. As the research deepens, numerous evidences reveal that lactylation also occurs on non-histone proteins. The discovery of lactylation has expanded our understanding of lactate functions in the pathogenesis of diseases. In this review, we summarize the roles and mechanisms of lactylation in tumor, inflammatory and neural system diseases, in order to provide new ideas for the research, diagnosis and treatment of these diseases

    ZSTAD: Zero-Shot Temporal Activity Detection

    Full text link
    An integral part of video analysis and surveillance is temporal activity detection, which means to simultaneously recognize and localize activities in long untrimmed videos. Currently, the most effective methods of temporal activity detection are based on deep learning, and they typically perform very well with large scale annotated videos for training. However, these methods are limited in real applications due to the unavailable videos about certain activity classes and the time-consuming data annotation. To solve this challenging problem, we propose a novel task setting called zero-shot temporal activity detection (ZSTAD), where activities that have never been seen in training can still be detected. We design an end-to-end deep network based on R-C3D as the architecture for this solution. The proposed network is optimized with an innovative loss function that considers the embeddings of activity labels and their super-classes while learning the common semantics of seen and unseen activities. Experiments on both the THUMOS14 and the Charades datasets show promising performance in terms of detecting unseen activities

    Integrating spatial and non-spatial dimensions to evaluate access to rural primary healthcare service: a case study of Songzi, China

    Get PDF
    Access to rural primary healthcare services has been broadly studied in the past few decades. However, most earlier studies that focused on examining access to rural healthcare services have conventionally treated spatial and non-spatial access as separate factors. This research aims to measure access to primary healthcare services in rural areas with the consideration of both spatial and non-spatial dimensions. The methodology of study is threefold. First, the Gaussian two-step floating catchment area (G-2SFCA) method was adopted to measure spatial access to primary healthcare services. Then, a questionnaire survey was conducted to investigate non-spatial access factors, including demographic condition, patient’s household income, healthcare insurance, education level, and patient satisfaction level with the services. After that, a comprehensive evaluation index system was employed to integrate both spatial and non-spatial access. The empirical study showed a remarkable disparity in spatial access to primary healthcare services. In total, 78 villages with 185,137 local people had a “low” or “very low” level of spatial access to both clinics and hospitals. For the non-spatial dimension, the results depicted that Songzi had significant inequalities in socioeconomic status (e.g., income, education) and patient satisfaction level for medical service. When integrating both spatial and non-spatial factors, the disadvantaged areas were mainly located in the eastern and middle parts. In addition, this study found that comprehensively considering the spatial and non-spatial access had a significant impact on results in healthcare access. In conclusion, this study calls for policymakers to pay more attention to primary healthcare inequalities within rural areas. The spatial and non-spatial access should be considered comprehensively when the long-term rural medical support policy is designated

    Automatic 2-D/3-D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter

    Get PDF
    Automated detection of vascular structures is of great importance in understanding the mechanism, diagnosis and treatment of many vascular pathologies. However, automatic vascular detection continues to be an open issue because of difficulties posed by multiple factors such as poor contrast, inhomogeneous backgrounds, anatomical variations, and the presence of noise during image acquisition. In this paper, we propose a novel 2D/3D symmetry filter to tackle these challenging issues for enhancing vessels from different imaging modalities. The proposed filter not only considers local phase features by using a quadrature filter to distinguish between lines and edges, but also uses the weighted geometric mean of the blurred and shifted responses of the quadrature filter, which allows more tolerance of vessels with irregular appearance. As a result, this filter shows a strong response to the vascular features under typical imaging conditions. Results based on 8 publicly available datasets (six 2D datasets, one 3D dataset and one 3D synthetic dataset) demonstrate its superior performance to other state-ofthe- art methods

    GCF2-Net: global-aware cross-modal feature fusion network for speech emotion recognition

    Get PDF
    Emotion recognition plays an essential role in interpersonal communication. However, existing recognition systems use only features of a single modality for emotion recognition, ignoring the interaction of information from the different modalities. Therefore, in our study, we propose a global-aware Cross-modal feature Fusion Network (GCF2-Net) for recognizing emotion. We construct a residual cross-modal fusion attention module (ResCMFA) to fuse information from multiple modalities and design a global-aware module to capture global details. More specifically, we first use transfer learning to extract wav2vec 2.0 features and text features fused by the ResCMFA module. Then, cross-modal fusion features are fed into the global-aware module to capture the most essential emotional information globally. Finally, the experiment results have shown that our proposed method has significant advantages than state-of-the-art methods on the IEMOCAP and MELD datasets, respectively

    The Impact of Fertilizer Amendments on Soil Autotrophic Bacteria and Carbon Emissions in Maize Field on the Semiarid Loess Plateau

    Get PDF
    Soil autotrophic bacteria play a crucial role in regulating CO2 fixation and crop productivity. However, the information is limited to how fertilization amendments alter soil autotrophic bacterial community, crop yield, and carbon emission efficiency (CEE). Here, we estimated the impact of the structure and co-occurrence network of soil autotrophic bacterial community on maize yield and CEE. A long-term field experiment was conducted with five fertilization treatments in semiarid Loess Plateau, including no amendment (NA), chemical fertilizer (CF), chemical fertilizer plus commercial organic fertilizer (SC), commercial organic fertilizer (SM), and maize straw (MS). The results showed that fertilization amendments impacted the structure and network of soil Calvin–Benson–Bassham (CBB) (cbbL) gene-carrying bacterial community via changing soil pH and NO3–N. Compared with no amendment, the cbbL-carrying bacterial diversity was increased under the SC, SM, and MS treatments but decreased under the CF treatment. Soil autotrophic bacterial network contained distinct microbial modules that consisted of closely associated microbial species. We detected the higher abundances of soil cbbL-carrying bacterial genus Xanthobacter, Bradyrhizobium, and Nitrosospira. Structural equation modeling further suggested that the diversity, composition, and network of autotrophic bacterial community had strongly positive relationships with CEE and maize yield. Taken together, our results suggest that soil autotrophic bacterial community may drive crop productivity and CEE, and mitigate the atmospheric greenhouse effect
    • …
    corecore