12 research outputs found

    Efficacy of an Adenoviral Vectored Multivalent Centralized Influenza Vaccine

    Get PDF
    Mice were immunized with Adenovirus expressing the H1-con, H2-con, H3-con and H5-con HA consensus genes in combination (multivalent) and compared to mice immunized with the traditional 2010–2011 FluZone and FluMist seasonal vaccines. Immunized mice were challenged with 10–100 MLD50 of H1N1, H3N1, H3N2 and H5N1 influenza viruses. The traditional vaccines induced robust levels of HA inhibition (HI) titers, but failed to protect against five different heterologous lethal influenza challenges. Conversely, the multivalent consensus vaccine (1 × 1010 virus particles (vp)/mouse) induced protective HI titers of ≥40 against 8 of 10 influenza viruses that represent a wide degree of divergence within the HA subtypes and protected 100% of mice from 8 of 9 lethal heterologous influenza virus challenges. The vaccine protection was dose dependent, in general, and a dose as low as 5 × 107 vp/ mouse still provided 100% survival against 7 of 9 lethal heterologous influenza challenges. These data indicate that very low doses of Adenovirus-vectored consensus vaccines induce superior levels of immunity against a wide divergence of influenza subtypes as compared to traditional vaccines. These doses are scalable and translatable to humans and may provide the foundation for complete and longlasting anti-influenza immunity

    Kaposi’s Sarcoma-Associated Herpesvirus Reduces Cellular Myeloid Differentiation Primary-Response Gene 88 (MyD88) Expression via Modulation of Its RNA

    Get PDF
    Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with several human malignancies. The replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. Interleukin 1 (IL-1) is a major mediator for inflammation and plays an important role in both innate and adaptive immunity. Myeloid differentiation primary response gene 88 (MyD88) is an essential adaptor molecule for IL-1 as well as most Toll-like receptor signaling. In this study, we identified a novel mechanism by which KSHV interferes with host inflammation and immunity. KSHV RTA specifically reduces the steady-state protein levels of MyD88, and physiological levels of MyD88 are downregulated during KSHV lytic replication when RTA is expressed. The N-terminal region of RTA is required for the reduction of MyD88. Additional studies demonstrated that RTA targets MyD88 expression at the RNA level, inhibits RNA synthesis of MyD88, and may bind MyD88 RNA. Finally, RTA inhibits IL-1-mediated activation of NF-B. Because IL-1 is abundant in the KS microenvironment and inhibits KSHV replication, this work may expand our understanding of how KSHV evades host inflammation and immunity for its survival in vivo

    Kaposi’s Sarcoma-Associated Herpesvirus Reduces Cellular Myeloid Differentiation Primary-Response Gene 88 (MyD88) Expression via Modulation of Its RNA

    Get PDF
    Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with several human malignancies. The replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. Interleukin 1 (IL-1) is a major mediator for inflammation and plays an important role in both innate and adaptive immunity. Myeloid differentiation primary response gene 88 (MyD88) is an essential adaptor molecule for IL-1 as well as most Toll-like receptor signaling. In this study, we identified a novel mechanism by which KSHV interferes with host inflammation and immunity. KSHV RTA specifically reduces the steady-state protein levels of MyD88, and physiological levels of MyD88 are downregulated during KSHV lytic replication when RTA is expressed. The N-terminal region of RTA is required for the reduction of MyD88. Additional studies demonstrated that RTA targets MyD88 expression at the RNA level, inhibits RNA synthesis of MyD88, and may bind MyD88 RNA. Finally, RTA inhibits IL-1-mediated activation of NF-B. Because IL-1 is abundant in the KS microenvironment and inhibits KSHV replication, this work may expand our understanding of how KSHV evades host inflammation and immunity for its survival in vivo

    Kaposi’s Sarcoma-Associated Herpesvirus Reduces Cellular Myeloid Differentiation Primary-Response Gene 88 (MyD88) Expression via Modulation of Its RNA

    Get PDF
    Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with several human malignancies. The replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. Interleukin 1 (IL-1) is a major mediator for inflammation and plays an important role in both innate and adaptive immunity. Myeloid differentiation primary response gene 88 (MyD88) is an essential adaptor molecule for IL-1 as well as most Toll-like receptor signaling. In this study, we identified a novel mechanism by which KSHV interferes with host inflammation and immunity. KSHV RTA specifically reduces the steady-state protein levels of MyD88, and physiological levels of MyD88 are downregulated during KSHV lytic replication when RTA is expressed. The N-terminal region of RTA is required for the reduction of MyD88. Additional studies demonstrated that RTA targets MyD88 expression at the RNA level, inhibits RNA synthesis of MyD88, and may bind MyD88 RNA. Finally, RTA inhibits IL-1-mediated activation of NF-B. Because IL-1 is abundant in the KS microenvironment and inhibits KSHV replication, this work may expand our understanding of how KSHV evades host inflammation and immunity for its survival in vivo

    Kaposi’s Sarcoma-Associated Herpesvirus Reduces Cellular Myeloid Differentiation Primary-Response Gene 88 (MyD88) Expression via Modulation of Its RNA

    Get PDF
    Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with several human malignancies. The replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. Interleukin 1 (IL-1) is a major mediator for inflammation and plays an important role in both innate and adaptive immunity. Myeloid differentiation primary response gene 88 (MyD88) is an essential adaptor molecule for IL-1 as well as most Toll-like receptor signaling. In this study, we identified a novel mechanism by which KSHV interferes with host inflammation and immunity. KSHV RTA specifically reduces the steady-state protein levels of MyD88, and physiological levels of MyD88 are downregulated during KSHV lytic replication when RTA is expressed. The N-terminal region of RTA is required for the reduction of MyD88. Additional studies demonstrated that RTA targets MyD88 expression at the RNA level, inhibits RNA synthesis of MyD88, and may bind MyD88 RNA. Finally, RTA inhibits IL-1-mediated activation of NF-B. Because IL-1 is abundant in the KS microenvironment and inhibits KSHV replication, this work may expand our understanding of how KSHV evades host inflammation and immunity for its survival in vivo

    Kaposi’s Sarcoma-Associated Herpesvirus Reduces Cellular Myeloid Differentiation Primary-Response Gene 88 (MyD88) Expression via Modulation of Its RNA

    Get PDF
    Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with several human malignancies. The replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. Interleukin 1 (IL-1) is a major mediator for inflammation and plays an important role in both innate and adaptive immunity. Myeloid differentiation primary response gene 88 (MyD88) is an essential adaptor molecule for IL-1 as well as most Toll-like receptor signaling. In this study, we identified a novel mechanism by which KSHV interferes with host inflammation and immunity. KSHV RTA specifically reduces the steady-state protein levels of MyD88, and physiological levels of MyD88 are downregulated during KSHV lytic replication when RTA is expressed. The N-terminal region of RTA is required for the reduction of MyD88. Additional studies demonstrated that RTA targets MyD88 expression at the RNA level, inhibits RNA synthesis of MyD88, and may bind MyD88 RNA. Finally, RTA inhibits IL-1-mediated activation of NF-B. Because IL-1 is abundant in the KS microenvironment and inhibits KSHV replication, this work may expand our understanding of how KSHV evades host inflammation and immunity for its survival in vivo

    Target highlights in CASP9: Experimental target structures for the critical assessment of techniques for protein structure prediction

    Get PDF
    15 pags, 9 figsOne goal of the CASP community wide experiment on the critical assessment of techniques for protein structure prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, that is, the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this article, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fiber protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ dimerization/docking domain, the ectodomain of the JTB (jumping translocation breakpoint) transmembrane receptor, Autotaxin in complex with an inhibitor, the DNA-binding J-binding protein 1 domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the phycobilisome core-membrane linker phycobiliprotein ApcE from Synechocystis, the heat shock protein 90 activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. © 2011 Wiley-Liss, Inc.Grant sponsor: Spanish Ministry of Education and Science; Grant number: BFU2008-01588; Grant sponsor: European Commission; Grant number: NMP4-CT-2006-033256; Grant sponsor: Spanish Ministry of Education and Science (José Castillejo fellowship); Grant sponsor: Xunta de Galicia (Angeles Alvariño fellowship); Grant sponsor: National Institutes of Health; Grant numbers: K22-CA124517 (D.E.C.); R01-GM090161 (C.K.) GM074942; GM094585; Grant sponsor: U. S. Department of Energy, Office of Biological and Environmental Research; Grant number: DE-AC02-06CH11357 (to A.J.); Grant sponsor: Foundation for Polish Science (to K.M.); Grant sponsor: NSF; Grant number: DBI 0829586

    Testing the Association of SpcU and ExoU with the Type Three Secretion System Loading Platform of Pseudomonas aeruginosa via Two Hybrid Analysis

    No full text
    One mechanism used by Pseudomonas aeruginosa to promote infection of eukaryotic host organisms is the type three secretion system. The Type III secretion system is also used by other types of gram- negative pathogenic bacteria. The type three secretion system is made up of about 20 different protein subunits. Recently, three proteins, PscK, PscL, and PscQ, were proposed to form a loading platform. We are testing whether homologs of the three proposed loading platform proteins found in Pseudomonas aeruginosa form a complex and whether the chaperone protein SpcU and the effector ExoU interact with any of the proposed loading platform proteins. To test their interaction, we are using the yeast two hybrid system. For those experiments, we first cloned each of the genes for the three platform proteins into yeast plasmids. Preliminary results with the constructed plasmids have suggested that PscL and PscQ, and PscL and SpcU, may interact. However, we have encountered some technical problems with the assay that may be preventing the detection of interaction. These results would suggest that PscK is not part of the complex, however, that would need to be confirmed by other methods

    Efficacy of an Adenoviral Vectored Multivalent Centralized Influenza Vaccine

    Get PDF
    Mice were immunized with Adenovirus expressing the H1-con, H2-con, H3-con and H5-con HA consensus genes in combination (multivalent) and compared to mice immunized with the traditional 2010–2011 FluZone and FluMist seasonal vaccines. Immunized mice were challenged with 10–100 MLD50 of H1N1, H3N1, H3N2 and H5N1 influenza viruses. The traditional vaccines induced robust levels of HA inhibition (HI) titers, but failed to protect against five different heterologous lethal influenza challenges. Conversely, the multivalent consensus vaccine (1 × 1010 virus particles (vp)/mouse) induced protective HI titers of ≥40 against 8 of 10 influenza viruses that represent a wide degree of divergence within the HA subtypes and protected 100% of mice from 8 of 9 lethal heterologous influenza virus challenges. The vaccine protection was dose dependent, in general, and a dose as low as 5 × 107 vp/ mouse still provided 100% survival against 7 of 9 lethal heterologous influenza challenges. These data indicate that very low doses of Adenovirus-vectored consensus vaccines induce superior levels of immunity against a wide divergence of influenza subtypes as compared to traditional vaccines. These doses are scalable and translatable to humans and may provide the foundation for complete and longlasting anti-influenza immunity
    corecore