162 research outputs found

    The search for reference sources for delta VLBI navigation of the Galileo spacecraft

    Get PDF
    A comprehensive search was made in order to identify celestial radio sources that can be used as references for navigation of the Galileo spacecraft by means of VLBI observations. The astronomical literature was seached for potential navigation sources, and several VLBI experiments were performed to determine the suitability of those sources for navigation. The results of such work performed since mid-1983 is reported. A summary is presented of the source properties required, the procedures used to identify candidate sources, and the results of the observations of these sources. The lists of souces presented are not meant to be taken directly and used for VLBI navigation, but they do provide a means of identifying the radio sources that could be used at various positions along the Galileo trajectory. Since the reference sources nearest the critical points of Jupiter encounter and probe release are rather weak, it would be extremely beneficial to use a pair of 70-m antennas for the VLBI measurements

    Very long baseline interferometry using a radio telescope in Earth orbit

    Get PDF
    Successful Very Long Baseline Interferometry (VLBI) observations at 2.3 GHz were made using an antenna aboard an Earth-orbiting spacecraft as one of the receiving telescopes. These observations employed the first deployed satellite (TDRSE-E for East) of the NASA Tracking and Data Relay Satellite System (TDRSS). Fringes were found for 3 radio sources on baselines between TDRSE and telescopes in Australia and Japan. The purpose of this experiment and the characteristics of the spacecraft that are related to the VLBI observations are described. The technical obstacles to maintaining phase coherence between the orbiting antenna and the ground stations, as well as the calibration schemes for the communication link between TDRSE and its ground station at White Sands, New Mexico are explored. System coherence results and scientific results for the radio source observations are presented. Using all available calibrations, a coherence of 84% over 700 seconds was achieved for baselines to the orbiting telescope

    A test of water vapor radiometer-based troposphere calibration using VLBI observations on a 21-kilometer baseline

    Get PDF
    Simultaneous very long baseline interferometry (VLBI) and water vapor radiometer (WVR) measurements on a 21 km baseline showed that calibration by WVRs removed a significant fraction of the effect of tropospheric delay fluctuations for these experiments. From comparison of the residual delay variations within scans and between scans, the total tropospheric contribution t the delay residuals for each of the three 5 to 20 hour sessions was estimated as 1, 17, and 10%, with the first value being uncertain. The observed improvement in rms residual delay from WVR calibration during these three sessions was 4, 16, and 2%, respectively. The improvement is consistent with the estimated 2 to 3 mm path delay precision of current WVRs. The VLBI measurements, of natural radio sources, were conducted in April and May 1993 at Goldstone, California. Dual-frequency (2.3 and 8.4 GHz) observations were employed to remove the effects of charged particles from the data. Measurements with co-pointed WVRs, located within 50 m of the axis of each antenna, were performed to test the ability of the WVRs to calibrate line-of-sight path delays. Factors that made WVR performance assessment difficult included (1) the fact that the level of tropospheric fluctuations was smaller than is typical for Goldstone during these experiments and (2) VLBI delay variations on longer time scales (i.e., over multiple scans) contained uncalibrated instrumental effects (probably a result of slow temperature variations in the VLBI hardware) that were larger than the tropospheric effects

    Tunneling Between Two-Dimensional Electron Gases in a Strong Magnetic Field

    Full text link
    We have measured the tunneling between two two-dimensional electron gases at high magnetic fields BB, when the carrier densities of the two electron layers are matched. For filling factors ν<1\nu<1, there is a gap in the current-voltage characteristics centered about V=0V=0, followed by a tunneling peak at 6\sim 6~mV. Both features have been observed before and have been attributed to electron-electron interactions within a layer. We have measured high field tunneling peak positions and fitted gap parameters that are proportional to BB, and independent of the carrier densities of the two layers. This suggests a different origin for the gap to that proposed by current theories, which predict a B\sqrt{B} dependence.Comment: 9 pages, cond-mat/yymmnn

    Nonlinear frequency mixing in quantum cascade lasers: Towards broadband wavelength shifting and THz up-conversion

    Get PDF
    Terahertz (THz) sideband generation on a near-infrared (NIR) carrier has been recently demonstrated using quantum cascade lasers (QCL), with potential applications in wavelength shifting and THz up-conversion. However, the NIR wavelength range and nonlinear efficiency were severely limited by absorption. Here we overcome this drawback through a novel reflection geometry, whilst preserving a large interaction area. As well as insights into the nonlinear mechanism, this allows a much large range of NIR pump energies, relaxing the criteria of using particular excitation wavelengths

    Superluminal Expansion of 3C 273

    Get PDF
    Figure 1 shows hybrid maps of the core of 3C 273B at five epochs, made with arrays of 4 or 5 VLBI antennas. The maps span a period of 3.5 years. They all show a bright eastern peak and a lower-brightness extension to the west. There is a local maximum in the western extension between 6 and 8 milliarcsec from the main peak. This “blob” moves steadily further away from the main peak along a roughly straight line in PA −116° ± 2°. Compare this with the position angle of the 25-arcsec optical jet, −137°. The maps show a slight curvature to the south with increasing separation from the main peak. Lower-resolution VLBI maps at lower frequencies show that this curvature continues at greater separations, suggesting a smooth connection between the milli-arcsecond position angle and the position angle of the optical jet. In our latest map (1981.09) the blob is no longer detectable with the limited dynamic range of the VLBI network (about 20:1)

    Far-field engineering of metal -metal terahertz quantum cascade lasers with integrated horn antennas

    Get PDF
    The far-field of metal-metal terahertz quantum cascade lasers is greatly improved through integrated and stable planar horn antennas on top of the QCL ridge. The antenna structures introduce a gradual change in the high modal confinement of metal-metal waveguides and permit an improved far-field, showing a five times increase in the emitted output power. The two dimensional far-field patterns are measured at 77K and compared to electromagnetic simulations. The influence of parasitic high order transverse modes are restricted through the engineering of antenna structure (ridge and antenna width) to couple out the fundamental mode only

    Phase-locked arrays of surface-emitting graded-photonic-heterostructure terahertz semiconductor lasers

    Get PDF
    We have demonstrated that a hybrid laser array, combining graded-photonic-heterostructure terahertz semiconductor lasers with a ring resonator, allows the relative phase (either symmetric or anti-symmetric) between the sources to be fixed by design. We have successfully phase-locked up to five separate lasers. Compared with a single device, we achieved a clear narrowing of the output beam profile

    Metal-insulator transition at B=0 in a dilute two dimensional GaAs-AlGaAs hole gas

    Full text link
    We report the observation of a metal insulator transition at B=0 in a high mobility two dimensional hole gas in a GaAs-AlGaAs heterostructure. A clear critical point separates the insulating phase from the metallic phase, demonstrating the existence of a well defined minimum metallic conductivity sigma(min)=2e/h. The sigma(T) data either side of the transition can be `scaled' on to one curve with a single parameter (To). The application of a parallel magnetic field increases sigma(min) and broadens the transition. We argue that strong electron-electron interactions (rs = 10) destroy phase coherence, removing quantum intereference corrections to the conductivity.Comment: 4 pages RevTex + 4 figures. Submitted to PRL. Originally posted 22 September 1997. Revised 12 October 1997 - minor changes to referencing, figure cations and figure
    corecore