7,482 research outputs found

    Geometric scaling of purely-elastic flow instabilities

    Full text link
    We present a combined experimental, numerical and theoretical investigation of the geometric scaling of the onset of a purely-elastic flow instability in a serpentine channel. Good qualitative agreement is obtained between experiments, using dilute solutions of flexible polymers in microfluidic devices, and two-dimensional numerical simulations using the UCM model. The results are confirmed by a simple theoretical analysis, based on the dimensionless criterion proposed by Pakdel-McKinley for onset of a purely-elastic instability

    Radiative cascade from quantum dot metastable spin-blockaded biexciton

    Get PDF
    We detect a novel radiative cascade from a neutral semiconductor quantum dot. The cascade initiates from a metastable biexciton state in which the holes form a spin-triplet configuration, Pauli-blockaded from relaxation to the spin-singlet ground state. The triplet biexciton has two photon-phonon-photon decay paths. Unlike in the singlet-ground state biexciton radiative cascade, in which the two photons are co-linearly polarized, in the triplet biexciton cascade they are crosslinearly polarized. We measured the two-photon polarization density matrix and show that the phonon emitted when the intermediate exciton relaxes from excited to ground state, preserves the exciton's spin. The phonon, thus, does not carry with it any which-path information other than its energy. Nevertheless, entanglement distillation by spectral filtering was found to be rather ineffective for this cascade. This deficiency results from the opposite sign of the anisotropic electron-hole exchange interaction in the excited exciton relative to that in the ground exciton.Comment: 6 pages, 4 figure

    Bi-Laplacian Growth Patterns in Disordered Media

    Full text link
    Experiments in quasi 2-dimensional geometry (Hele Shaw cells) in which a fluid is injected into a visco-elastic medium (foam, clay or associating-polymers) show patterns akin to fracture in brittle materials, very different from standard Laplacian growth patterns of viscous fingering. An analytic theory is lacking since a pre-requisite to describing the fracture of elastic material is the solution of the bi-Laplace rather than the Laplace equation. In this Letter we close this gap, offering a theory of bi-Laplacian growth patterns based on the method of iterated conformal maps.Comment: Submitted to PRL. For further information see http://www.weizmann.ac.il/chemphys/ander

    An Upper Bound on the Higgs Boson Mass from a Positivity Condition on the Mass Matrix

    Get PDF
    We impose the condition that the eigenvalues of the mass matrix in the shifted Lagrangian density be positive at \phi=\phi_{0}, the vacuum expectation value of the scalar field. Using the one-loop effective potential of the standard model, this condition leads to an upper bound on the Higgs boson mass m_{H}: m_{H}<230GeV, for a top quark mass of 175GeV.Comment: LaTex, 5 page

    Drift and Diffusion in Periodically Driven Renewal Processes

    Full text link
    We consider the drift and diffusion properties of periodically driven renewal processes. These processes are defined by a periodically time dependent waiting time distribution, which governs the interval between subsequent events. We show that the growth of the cumulants of the number of events is asymptotically periodic and develop a theory which relates these periodic growth coefficients to the waiting time distribution defining the periodic renewal process. The first two coefficients, which are the mean frequency and effective diffusion coefficient of the number of events are considered in greater detail. They may be used to quantify stochastic synchronization.Comment: 29 pages, 6 figures, submitted to Journal of Statistical Physic

    Attosecond double-slit experiment

    Get PDF
    A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (``slits'') of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are observed. A situation in which one and the same electron encounters a single and a double slit at the same time is discussed. The investigation of the fringes makes possible interferometry on the attosecond time scale. The number of visible fringes, for example, indicates that the slits are extended over about 500as.Comment: 4 figure

    Cyclotron Resonance Assisted Photocurrents in Surface States of a 3D Topological Insulator Based on a Strained High Mobility HgTe Film

    Get PDF
    We report on the observation of cyclotron resonance induced photocurrents, excited by continuous wave terahertz radiation, in a 3D topological insulator (TI) based on an 80 nm strained HgTe film. The analysis of the photocurrent formation is supported by complimentary measurements of magneto-transport and radiation transmission. We demonstrate that the photocurrent is generated in the topologically protected surface states. Studying the resonance response in a gated sample we examined the behavior of the photocurrent, which enables us to extract the mobility and the cyclotron mass as a function of the Fermi energy. For high gate voltages we also detected cyclotron resonance (CR) of bulk carriers, with a mass about two times larger than that obtained for the surface states. The origin of the CR assisted photocurrent is discussed in terms of asymmetric scattering of TI surface carriers in the momentum space. Furthermore, we show that studying the photocurrent in gated samples provides a sensitive method to probe the effective masses and the mobility of 2D Dirac surface states, when the Fermi level lies in the bulk energy gap or even in the conduction band

    A Discrete and Bounded Envy-free Cake Cutting Protocol for Four Agents

    Full text link
    We consider the well-studied cake cutting problem in which the goal is to identify a fair allocation based on a minimal number of queries from the agents. The problem has attracted considerable attention within various branches of computer science, mathematics, and economics. Although, the elegant Selfridge-Conway envy-free protocol for three agents has been known since 1960, it has been a major open problem for the last fifty years to obtain a bounded envy-free protocol for more than three agents. We propose a discrete and bounded envy-free protocol for four agents

    An ultra-low field SQUID magnetometer for measuring antiferromagnetic and weakly remanent magnetic materials at low temperatures

    Get PDF
    A novel setup for the measurement of magnetic fields external to certain antiferromagnets and generally weakly remanent magnetic materials is presented. The setup features a highly sensitive Super Conducting Quantum Interference Device (SQUID) magnetometer with a magnetic field resolution of approx. 10 fT, non-electric thermalization of the sample space for a temperature range of 1.5 - 65 K with a non-electric sample movement drive and optical position encoding. To minimize magnetic susceptibility effects, the setup components are degaussed and realized with plastic materials in sample proximity. Running the setup in magnetically shielded rooms allows for a well-defined ultra low magnetic background field well below 150 nT in situ. The setup enables studies of inherently weak magnetic materials which cannot be measured with high field susceptibility setups, optical methods or neutron scattering techniques, giving new opportunities for the research on e.g. spin-spiral multiferroics, skyrmion materials and spin ices
    • …
    corecore