10,450 research outputs found

    Binary-Induced Gravitational Collapse: A Trivial Example

    Get PDF
    We present a simple model illustrating how a highly relativistic, compact object which is stable in isolation can be driven dynamically unstable by the tidal field of a binary companion. Our compact object consists of a test-particle in a relativistic orbit about a black hole; the binary companion is a distant point mass. Our example is presented in light of mounting theoretical opposition to the possibility that sufficiently massive, binary neutron stars inspiraling from large distance can collapse to form black holes prior to merger. Our strong-field model suggests that first order post-Newtonian treatments of binaries, and stability analyses of binary equilibria based on orbit-averaged, mean gravitational fields, may not be adequate to rule out this possibility.Comment: 7 pages, 5 figures, RevTeX, to appear in Phys. Rev. D, Jan 15 199

    VLBA Imaging of the OH Maser in IIIZw35

    Get PDF
    We present a parsec-scale image of the OH maser in the nucleus of the active galaxy IIIZw35, made using the Very Long Baseline Array at a wavelength of 18 cm. We detected two distinct components, with a projected separation of 50 pc (for D=110 Mpc) and a separation in Doppler velocity of 70 km/s, which contain 50% of the total maser flux. Velocity gradients within these components could indicate rotation of clouds with binding mass densities of ~7000 solar masses per cubic parsec, or total masses of more than 500,000 solar masses. Emission in the 1665-MHz OH line is roughly coincident in position with that in the 1667-MHz line, although the lines peak at different Doppler velocities. We detected no 18 cm continuum emission; our upper limit implies a peak apparent optical depth greater than 3.4, assuming the maser is an unsaturated amplifier of continuum radiation.Comment: 10 pages, 3 figure

    The stigmatisation of people with chronic back pain

    Get PDF
    This study responded to the need for better theoretical understanding of experiences that shape the beliefs, attitudes and needs of chronic back patients attending pain clinics. The aim was explore and conceptualise the experiences of people of working age who seek help from pain clinics for chronic back pain. Methods. This was a qualitative study, based on an interpretative phenomenological approach (IPA). During in-depth interviews in their homes, participants were invited to 'tell their story' from the time their pain began. Participants were twelve male and six female patients, aged between 28 and 62 years, diagnosed as having chronic benign back pain. All had recently attended one of two pain clinics as new referrals. The interview transcripts were analysed thematically. Findings. Stigmatisation emerged as a key theme from the narrative accounts of participants. The findings expose subtle as well as overt stigmatising responses by family, friends, health professionals and the general public which appeared to have a profound effect on the perceptions, self esteem and behaviours of those interviewed. Conclusions. The findings suggest that patients with chronic back pain feel stigmatised by the time they attend pain clinics and this may affect their attitudes and behaviours towards those offering professional help. Theories of chronic pain need to accommodate these responses, while pain management programmes need to address the realities and practicalities of dealing with stigma in everyday life

    The self-force on a static scalar test-charge outside a Schwarzschild black hole

    Get PDF
    The finite part of the self-force on a static scalar test-charge outside a Schwarzschild black hole is zero. By direct construction of Hadamard's elementary solution, we obtain a closed-form expression for the minimally coupled scalar field produced by a test-charge held fixed in Schwarzschild spacetime. Using the closed-form expression, we compute the necessary external force required to hold the charge stationary. Although the energy associated with the scalar field contributes to the renormalized mass of the particle (and thereby its weight), we find there is no additional self-force acting on the charge. This result is unlike the analogous electrostatic result, where, after a similar mass renormalization, there remains a finite repulsive self-force acting on a static electric test-charge outside a Schwarzschild black hole. We confirm our force calculation using Carter's mass-variation theorem for black holes. The primary motivation for this calculation is to develop techniques and formalism for computing all forces - dissipative and non-dissipative - acting on charges and masses moving in a black-hole spacetime. In the Appendix we recap the derivation of the closed-form electrostatic potential. We also show how the closed-form expressions for the fields are related to the infinite series solutions.Comment: RevTeX, To Appear in Phys. Rev.
    • …
    corecore