83 research outputs found

    The FLASHES Survey I: Integral Field Spectroscopy of the CGM around 48 z=2.3−3.1z=2.3-3.1 QSOs

    Full text link
    We present the pilot study component of the Fluorescent Lyman-Alpha Structures in High-z Environments (FLASHES) Survey; the largest integral-field spectroscopy survey to date of the circumgalactic medium at z=2.3−3.1z=2.3-3.1. We observed 48 quasar fields between 2015 and 2018 with the Palomar Cosmic Web Imager (Matuszewski et al. 2010). Extended HI Lyman-α\mathrm{\alpha} emission is discovered around 42/48 of the observed quasars, ranging in projected, flux-weighted radius from 21-71 proper kiloparsecs (pkpc), with 26 nebulae exceeding 100 pkpc100\mathrm{~pkpc} in effective diameter. The circularly averaged surface brightness radial profile peaks at a maximum of 1×10−17 erg s−1 cm−2 arcsec−2\mathrm{1\times 10^{-17}~erg~s^{-1}~cm^{-2}~arcsec^{-2}} (2×10−15 erg s−1 cm−2 arcsec−22\times10^{-15}~\mathrm{erg~s^{-1}~cm^{-2}~arcsec^{-2}} adjusted for cosmological dimming) and luminosities range from 1.9×1043 erg s−11.9\times10^{43}~\mathrm{erg~s^{-1}} to −14.1×1043 erg s−1-14.1\times10^{43}~\mathrm{erg~s^{-1}}. The emission appears to have a highly eccentric morphology and a maximum covering factor of 50%50\% (60%60\% for giant nebulae). On average, the nebular spectra are red-shifted with respect to both the systemic redshift and Lyα\alpha peak of the quasar spectrum. The integrated spectra of the nebulae mostly have single or double-peaked line shapes with global dispersions ranging from 167 km s−1167~\mathrm{km~s^{-1}} to 690 km s−1690~\mathrm{km~s^{-1}}, though the individual (Gaussian) components of lines with complex shapes mostly appear to have dispersions ≀400\leq 400 km s−1\mathrm{km~s^{-1}}, and the flux-weighted velocity centroids of the lines vary by thousands of km s−1 \mathrm{km~s^{-1}} with respect to the systemic QSO redshifts. Finally, the root-mean-square velocities of the nebulae are found to be consistent with gravitational motions expected in dark matter halos of mass Mh≃1012.5M⊙\mathrm{M_h \simeq10^{12.5} M_\odot}. We compare these results to existing surveys at both higher and lower redshift

    Design of a precision calibration unit for Keck NIRC2 AO instrument

    Get PDF
    High-precision astrometry has the potential to address questions in planet formation, black hole science, Galactic structure, and more. However, in order to achieve a precision of sub-milli arcseconds (mas), we need a calibration method better than the current techniques such as on-sky calibration using calibrated stellar or stellar cluster systems, which have a precision of ~1 mas. Precision calibration unit with a regular grid of photo-lithographically manufactured pinholes combined with self-calibration techniques, on the other hand, is a new and innovative way to potentially achieve a precision of sub-mas over the entire field of view. This technique is beneficial to adaptive optic (AO) instruments for future telescopes like the Thirty Meter Telescope (TMT). In this work, we present our design for a new astrometric calibration unit to feed the NIRC2 AO instrument at the W. M. Keck Observatory. It allows calibration over a large field of view of 47" x 47"

    Design of a precision calibration unit for Keck NIRC2 AO instrument

    Get PDF
    High-precision astrometry has the potential to address questions in planet formation, black hole science, Galactic structure, and more. However, in order to achieve a precision of sub-milli arcseconds (mas), we need a calibration method better than the current techniques such as on-sky calibration using calibrated stellar or stellar cluster systems, which have a precision of ~1 mas. Precision calibration unit with a regular grid of photo-lithographically manufactured pinholes combined with self-calibration techniques, on the other hand, is a new and innovative way to potentially achieve a precision of sub-mas over the entire field of view. This technique is beneficial to adaptive optic (AO) instruments for future telescopes like the Thirty Meter Telescope (TMT). In this work, we present our design for a new astrometric calibration unit to feed the NIRC2 AO instrument at the W. M. Keck Observatory. It allows calibration over a large field of view of 47" x 47"

    FLASHES Survey. I. Integral Field Spectroscopy of the CGM around 48 z ≃ 2.3–3.1 QSOs

    Get PDF
    We present the pilot study of the Fluorescent Lyman-Alpha Structures in High-z Environments Survey; the largest integral field spectroscopy survey to date of the circumgalactic medium at z = 2.3–3.1. We observed 48 quasar fields with the Palomar Cosmic Web Imager to an average (2σ) limiting surface brightness of 6 × 10⁻Âč⁞ erg s⁻Âč cm⁻ÂČ arcsec⁻ÂČ (in a 1'' aperture and ~20 Å bandwidth). Extended H I Lyα emission is discovered around 37/48 of the observed quasars, ranging in projected radius from 14 to 55 proper kiloparsecs (pkpc), with one nebula exceeding 100 pkpc in effective diameter. The dimming-adjusted circularly averaged surface brightness profile peaks at 1 × 10⁻Âč⁔ erg s⁻Âč cm⁻ÂČ arcsec⁻ÂČ at R⊄ ~ 20 pkpc and integrated luminosities range from 0.4 to 9.4 × 10⁎³ erg s⁻Âč. The emission appears to have an eccentric morphology and an average covering factor of ~30%–40% at small radii. On average, the nebular spectra are redshifted with respect to both the systemic redshift and Lyα peak of the quasar spectrum. The integrated spectra of the nebulae mostly have single- or double-peaked profiles with global dispersions ranging from 143 to 708 km s⁻Âč, though the individual Gaussian components of lines with complex shapes mostly have dispersions ≀400 km s⁻Âč, and the flux-weighted velocity centroids of the lines vary by thousands of km s⁻Âč with respect to the QSO redshifts. Finally, the root-mean-square velocities of the nebulae are found to be consistent with those expected from gravitational motions in dark matter halos of mass Log₁₀(M_h[M⊙]) ≃ 12.2^(+0.7)_(-1.2). We compare these results to existing surveys at higher and lower redshift

    FIREBall-2: flight preparation of a proven balloon payload to image the intermediate redshift circumgalactic medium

    Full text link
    FIREBall-2 is a stratospheric balloon-borne 1-m telescope coupled to a UV multi-object slit spectrograph designed to map the faint UV emission surrounding z~0.7 galaxies and quasars through their Lyman-alpha line emission. This spectro-imager had its first launch on September 22nd 2018 out of Ft. Sumner, NM, USA. Because the balloon was punctured, the flight was abruptly interrupted. Instead of the nominal 8 hours above 32 km altitude, the instrument could only perform science acquisition for 45 minutes at this altitude. In addition, the shape of the deflated balloon, combined with a full Moon, revealed a severe off-axis scattered light path, directly into the UV science detector and about 100 times larger than expected. In preparation for the next flight, and in addition to describing FIREBall-2's upgrade, this paper discusses the exposure time calculator (ETC) that has been designed to analyze the instrument's optimal performance (explore the instrument's limitations and subtle trade-offs)

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    • 

    corecore