research

The FLASHES Survey I: Integral Field Spectroscopy of the CGM around 48 z=2.33.1z=2.3-3.1 QSOs

Abstract

We present the pilot study component of the Fluorescent Lyman-Alpha Structures in High-z Environments (FLASHES) Survey; the largest integral-field spectroscopy survey to date of the circumgalactic medium at z=2.33.1z=2.3-3.1. We observed 48 quasar fields between 2015 and 2018 with the Palomar Cosmic Web Imager (Matuszewski et al. 2010). Extended HI Lyman-α\mathrm{\alpha} emission is discovered around 42/48 of the observed quasars, ranging in projected, flux-weighted radius from 21-71 proper kiloparsecs (pkpc), with 26 nebulae exceeding 100 pkpc100\mathrm{~pkpc} in effective diameter. The circularly averaged surface brightness radial profile peaks at a maximum of 1×1017 erg s1 cm2 arcsec2\mathrm{1\times 10^{-17}~erg~s^{-1}~cm^{-2}~arcsec^{-2}} (2×1015 erg s1 cm2 arcsec22\times10^{-15}~\mathrm{erg~s^{-1}~cm^{-2}~arcsec^{-2}} adjusted for cosmological dimming) and luminosities range from 1.9×1043 erg s11.9\times10^{43}~\mathrm{erg~s^{-1}} to 14.1×1043 erg s1-14.1\times10^{43}~\mathrm{erg~s^{-1}}. The emission appears to have a highly eccentric morphology and a maximum covering factor of 50%50\% (60%60\% for giant nebulae). On average, the nebular spectra are red-shifted with respect to both the systemic redshift and Lyα\alpha peak of the quasar spectrum. The integrated spectra of the nebulae mostly have single or double-peaked line shapes with global dispersions ranging from 167 km s1167~\mathrm{km~s^{-1}} to 690 km s1690~\mathrm{km~s^{-1}}, though the individual (Gaussian) components of lines with complex shapes mostly appear to have dispersions 400\leq 400 km s1\mathrm{km~s^{-1}}, and the flux-weighted velocity centroids of the lines vary by thousands of km s1 \mathrm{km~s^{-1}} with respect to the systemic QSO redshifts. Finally, the root-mean-square velocities of the nebulae are found to be consistent with gravitational motions expected in dark matter halos of mass Mh1012.5M\mathrm{M_h \simeq10^{12.5} M_\odot}. We compare these results to existing surveys at both higher and lower redshift

    Similar works