113 research outputs found

    Otolith chemistry indicates recent worsened Baltic cod condition is linked to hypoxia exposure

    Get PDF
    Deoxygenation worldwide is increasing in aquatic systems with implications for organisms' biology, communities and ecosystems. Eastern Baltic cod has experienced a strong decline in mean body condition (i.e. weight at a specific length) over the past 20 years with effects on the fishery relying on this resource. The decrease in cod condition has been tentatively linked in the literature to increased hypoxic areas potentially affecting habitat range, but also to benthic prey and/or cod physiology directly. To date, no studies have been performed to test these mechanisms. Using otolith trace element microchemistry and hypoxia-responding metrics based on manganese (Mn) and magnesium (Mg), we investigated the relationship between fish body condition at capture and exposure to hypoxia. Cod individuals collected after 2000 with low body condition had a higher level of Mn/Mg in the last year of life, indicating higher exposure to hypoxic waters than cod with high body condition. Moreover, lifetime exposure to hypoxia was even more strongly correlated to body condition, suggesting that condition may reflect long-term hypoxia status. These results were irrespective of fish age or sex. This implies that as Baltic cod visit poor-oxygen waters, perhaps searching for benthic food, they compromise their own performance. This study specifically sheds light on the mechanisms leading to the low condition of cod and generally points to the impact of deoxygenation on ecosystems and fisheries

    Discrimination potential of otolith chemistry to distinguish two parapatric species of flounder (Platichthys) in the Baltic Sea

    Get PDF
    Baltic Sea flounder were recently split into two species, the offshore spawner Platichthys flesus and coastal spawner Platichthys solemdali. The two species can only be distinguished based on egg and sperm characteristics and via genetic analyses, which limits the species identification methods of larvae and juveniles to molecular techniques. We investigated whether otolith chemistry could be used as an additional tool to identify flounder to species level. We tested for species-specific differences in otolith multi-elemental signatures and spatial consistency of those differences for the early life stages of flounder in three areas of the central Baltic Sea (ICES SD 24-28), where the distribution of both species overlaps. Otolith chemistry signatures obtained through maternal transfer (i.e. core chemistry) and signatures that reflect the post-hatching phase were not significantly different between species. Species-specific differences at the sub-regional scale were only found for the Latvian coastal survey area for multiple elements (Ba, Cu, Mg, Pb, Sr and Zn), but were insufficiently distinct for reliable species discrimination. Geographic classification of age-0 juveniles to survey area was more successful than classification to species, which was reflected by a spatial trend in otolith Sr:Ca that followed the salinity gradient and higher Mn:Ca and I:Ca for Latvian individuals. Otolith chemistry of early life flounder from the Baltic Sea reflects spatial variability in environmental conditions but does not differentiate between the two flounder species in sympatric habitats

    Effect of Marine Hypoxia on Baltic Sea Cod Gadus morhua: Evidence From Otolith Chemical Proxies

    Get PDF
    The Baltic Sea contains the world’s largest anthropogenic deoxygenated zone, with increasing episodes and areal extent of hypoxia/anoxia. Atlantic cod in the Baltic has suffered a loss in condition which has been attributed mainly to hypoxia. Otoliths, the aragonitic structures that form part of the hearing/balance system in fishes, accumulate Mn in the presence of hypoxia and other reducing environments. Otoliths grow over the lifetime of fishes, and thus life-long records of hypoxia exposure exist for each individual fish. However, otolith Mn/Ca ratios are also sensitive to growth effects. We tested a new proxy to at least partially account for growth: Mn/Mg, since Mg levels reflect metabolic activity but not hypoxia. This and other elemental proxies were parsed annually from the otoliths to reconstruct lifetime histories of mean, maximum, and cumulative values of this proxy as well as others (Sr/Ca) that inform us about salinity conditions. We analyzed cod from five different time periods: Neolithic (4500 YBP, a normoxic baseline), 1980s, 1990s, 2000s, and 2010s – under different hypoxia intensities, assessing fish growth and condition in relation to hypoxia experience recorded by otolith proxies. Fish growth decreased with increasing hypoxia exposure; condition at capture (measured by Fulton’s K index) showed a strongly positive relation to growth indexed by magnesium (Mg/Ca). We conclude that cod otolith chemistry proxies not only inform about the hypoxia, growth, and metabolic status of cod, retrospectively throughout life, but also reflect the worsening situation for cod in the Baltic

    Deoxygenation impacts on Baltic Sea cod: Dramatic declines in ecosystem services of an iconic keystone predator

    Get PDF
    The intensified expansion of the Baltic Sea's hypoxic zone has been proposed as one reason for the current poor status of cod (Gadus morhua) in the Baltic Sea, with repercussions throughout the food web and on ecosystem services. We examined the links between increased hypoxic areas and the decline in maximum length of Baltic cod, a demographic proxy for services generation. We analysed the effect of different predictors on maximum length of Baltic cod during 1978-2014 using a generalized additive model. The extent of minimally suitable areas for cod (oxygen concentration >= 1 ml l(-1)) is the most important predictor of decreased cod maximum length. We also show, with simulations, the potential for Baltic cod to increase its maximum length if hypoxic areal extent is reduced to levels comparable to the beginning of the 1990s. We discuss our findings in relation to ecosystem services affected by the decrease of cod maximum length

    Marked recent declines in boron in Baltic Sea cod otoliths – a bellwether of incipient acidification in a vast hypoxic system?

    Get PDF
    Ocean acidification is spreading globally as a result of anthropogenic CO2 emissions, but the Baltic Sea has until recently been thought to be relatively well-buffered by terrigenous inputs of alkalinity from its watershed. We discovered a 3- to 5-fold decline in boron (as B : Ca) in otoliths of eastern Baltic cod (EBC) between the late 1990s and 2021. Examining a time series of EBC otoliths, we found varying levels of B : Ca starting in the 1980s, with the most recent years showing an all-time low for this period. This trend correlates with declines in pH and dissolved oxygen but not with changes in salinity. We examined possible physiological influences on B : Ca by including a collection of Icelandic cod as an “out-group”. Icelandic cod otoliths showed strongly positive correlations of B : Ca with physiologically regulated P : Ca; this was not the case for EBC. Finally, B : Ca in EBC otoliths is negatively correlated, to some extent, with Mn : Mg, a proposed proxy for hypoxia exposure. This negative relationship is hypothesized to reflect the dual phenomena of hypoxia and acidification as a result of decomposition of large algal blooms. Taken together, the otolith biomarkers Mn : Mg and B : Ca in cod suggest a general increase in both hypoxia and acidification within the Baltic intermediate and deep waters in the last decade

    Tracking Fish Lifetime Exposure to Mercury Using Eye Lenses

    Get PDF
    Mercury (Hg) uptake in fish is affected by diet, growth, and environmental factors such as primary productivity or oxygen regimes. Traditionally, fish Hg exposure is assessed using muscle tissue or whole fish, reflecting both loss and uptake processes that result in Hg bioaccumulation over entire lifetimes. Tracking changes in Hg exposure of an individual fish chronologically throughout its lifetime can provide novel insights into the processes that affect Hg bioaccumulation. Here we use eye lenses to determine Hg uptake at an annual scale for individual fish. We assess the widely distributed benthic round goby (Neogobius melanostomus) from the Baltic Sea, Lake Erie, and the St. Lawrence River. We aged layers of the eye lens using proportional relationships between otolith length at age and eye lens radius for each individual fish. Mercury concentrations were quantified using laser ablation inductively coupled plasma mass spectrometry. The eye lens Hg content revealed that Hg exposure increased with age in Lake Erie and the Baltic Sea but decreased with age in the St. Lawrence River, a trend not detected using muscle tissues. This novel methodology for measuring Hg concentration over time with eye lens chronology holds promise for quantifying how global change processes like increasing hypoxia affect the exposure of fish to Hg

    Changes in population depth distribution and oxygen stratification are involved in the current low condition of the eastern Baltic Sea cod (Gadus morhua)

    Get PDF
    During the past 20 years, hypoxic areas have expanded rapidly in the Baltic Sea, which has become one of the largest marine “dead zones” in the world. At the same time, the most important commercial fish population of the region, the eastern Baltic cod, has experienced a drastic reduction in mean body condition, but the processes behind the relation between deoxygenation and condition remain elusive. Here we use extensive long-term monitoring data on cod biology and distribution as well as on hydrological variations to investigate the processes that relate deoxygenation and cod condition during the autumn season. Our results show that the depth distribution of cod has increased during the past 4 decades at the same time of the expansion, and shallowing, of waters with oxygen concentrations detrimental to cod performance. This has resulted in a progressively increasing spatial overlap between the cod population and low-oxygenated waters after the mid-1990s. This spatial overlap and the actual oxygen concentration experienced by cod therein statistically explained a large proportion of the changes in cod condition over the years. These results complement previous analyses on fish otolith microchemistry that also revealed that since the mid-1990s, cod individuals with low condition were exposed to low-oxygen waters during their life. This study helps to shed light on the processes that have led to a decline of the eastern Baltic cod body condition, which can aid the management of this population currently in distress. Further studies should focus on understanding why the cod population has moved to deeper waters in autumn and on analyzing the overlap with low-oxygen waters in other seasons to quantify the potential effects of the variation

    Ocean deoxygenation: a primer

    Get PDF
    Earth’s ocean is losing oxygen; since the mid-20th century, 1%–2% of the global ocean oxygen inventory has been lost, and over 700 coastal sites have reported new or worsening low-oxygen conditions. This “ocean deoxygenation” is increasing and of great concern because of the potential magnitude of adverse changes to both global and local marine ecosystems. Oxygen is fundamental for life and biogeochemical processes in the ocean. In coastal and shelf regions and semi-enclosed seas, over-fertilization of waters largely from agriculture, sewage, and airborne sources creates algal blooms that die and decay, consuming oxygen. Globally, climate warming both exacerbates the problems from eutrophication and reduces the introduction of oxygen to the interior of the ocean. We discuss mechanisms, scale, assessments, projections, and impacts, including impacts to human well-being, at the individual, community, and ecosystem levels. Deoxygenation together with other stressors presents a major environmental challenge to sustainability and human use of the ocean

    PII: S0921-8009(99)00008-7

    Get PDF
    EDITORIAL The ecology of ecosystem services: introduction to the special issue Throughout history, humankind has enjoyed a love-hate relationship with Nature, praising its bounty, fearing catastrophe, or challenging and conquering wilderness and sea. Regardless of our sense of distance from Nature, humans are nonetheless one species out of millions of others on Earth, one with an exceptional ability to harness a vast spectrum of energy sources, materials, and organisms for our welfare. As we exit the second millennium, we enter a world in which our impacts on the environment no longer can be ignored on global scales. In the coming century, our species, numbering roughly 10 -12 billion, will be squeezing many natural resources to and in excess of their limits. We will also continue to affect profoundly biogeochemical and hydrological processes that occur at scales ranging from microbial to global-atmospheric. How did we get here? By doing what all organisms do: we use resources to survive and we reproduce successfully. As highly social creatures, we have been effective at organizing and developing infrastructure and mores that sequester resources and protect us from the environmental adversities of weather, disease, starvation, etc. The development of civilization and culture has blinded many to the fact that humans are irrevocably tied to the natural world, a blindness exacerbated during the fossil-fuel era. Many societies have become philosophically and mentally 'disembedded' from the biophysical milieu (see Borgströ m-Hansson and Wackernagel, this issue), despite the fact that socio-economic development ultimately depends on the dynamic capacity of ecosystems to support it. Although ecologists and other environmental scientists have long understood the strong coupling between humans and the rest of Nature, many choose to ignore this relationship and instead derive knowledge about the natural world by studying 'pristine' situations. Today, increasing numbers of these scientists are re-examining the Man-Nature links and attempting to make these clear to the public as well as to their colleagues. For example, Wilson (1992) drew attention to the importance of biodiversity, and to the emerging crisis of massive species extinction due to human alterations of ecosystems. Today, few people question the human dominance of the plane
    • …
    corecore