38 research outputs found

    Measuring Changes in Brain Metabolite Levels Using Live-animal Magnetic Resonance Spectroscopy and Offline LC-MS Metabolomics in a Binge-ethanol Murine Model

    Get PDF
    Alcoholism and acute alcohol binge are significant public health concerns. Liquid chromatography-mass spectrometry (LC-MS) based metabolomics is a robust and sensitive technique for determining and quantifying transient or permanent biochemical changes within the central nervous system (CNS). However, access to human tissue and CNS biofluid for such analyses is limited in a clinical context. In-vivo magnetic resonance spectroscopy (MRS) is an attractive alternative for clinical measurement but currently the technique is limited to a small to a number of well-characterized, highly abundant analytes. We therefore seek to correlate LC-MS and MRS measurements to better understand and leverage the strengths of each. Following live animal MRS measurement, metabolites in hippocampal brain punch homogenates were quantified by LC-MS, and a Spearman’s correlation coefficient was calculated. We found that the measurements for glutamine and glutamate,, were significantly correlated. Other established neurochemicals, including NAA and aspartate, showed non-significant correlations. NAAG showed little correlation between the two measurements. Additional experiments are ongoing to resolve these discrepancies, and determine how to achieve better agreement between the two methods. In addition,, we used Elements (Proteome Software) to determine differentially expressed metabolites between ethanol exposed and control mice.. An initial pass shows more than 1000 peak-picked features identified in the two conditions, with approximately 200 analytes identified in the metabolite database (human) based on accurate mass. Differentially expressed candidates can be validated further using tandem mass spectrometry and, where possible, the use of authentic standards. Metabolites that change after binge ethanol exposure are reported along with an overview of comparing MRS with LC-MS datasets

    Evaluation of an Online Physical and Mental Wellbeing Program for UST CRS Students: A Feasibility Study

    Get PDF
    Introduction: With the recent transition to online learning due to the COVID-19 pandemic, students experience academic difficulties, which affect their wellbeing. There is a need for an online wellbeing intervention program for students to address such concerns. This study aims to evaluate the feasibility and effectiveness of a six-week online educational wellbeing program for the physical and mental wellbeing of the University of Santo Tomas College of Rehabilitation Sciences (UST-CRS) students. Methods: This is a quasi-experimental one-group pretest-posttest study that recruited UST-CRS students without physical and mental conditions. Physical and mental wellbeing modules developed by experts were deployed using Wix. The International Physical Activity Questionnaire Short Form (IPAQ-SF) and World Health Organisation-Five WellBeing Index (WHO-5) were used for wellbeing assessment, while the Website Grader Tool and survey were used for website evaluation. Descriptive and inferential statistics were conducted using JAMOVI. Alpha was set at 0.05. Results: Seventeen students participated in the online wellbeing program. Statistically significant improvements in the IPAQ-SF scores on MET-minute for walking (p=0.04; 95% CI=647-1955), total MET-minute activities (p Discussion: The online wellbeing program is feasible and effective in increasing the physical and mental wellbeing of the students. The findings of this study may guide future experimental studies for online wellbeing programs for university students

    Aberrant Expression of Proteins Involved in Signal Transduction and DNA Repair Pathways in Lung Cancer and Their Association with Clinical Parameters

    Get PDF
    Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues.We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA) assay. The results showed that 18 molecules were significantly different (p<0.05) by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery.Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers

    Speech Communication

    Get PDF
    Contains reports on five research projects.C.J. Lebel FellowshipNational Institutes of Health (Grant 5 T32 NSO7040)National Institutes of Health (Grant 5 R01 NS04332)National Institutes of Health (Grant 5 R01 NS21183)National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 1 PO1-NS23734)National Science Foundation (Grant BNS 8418733)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0254)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0341)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0290)National Institutes of Health (Grant RO1-NS21183), subcontract with Boston UniversityNational Institutes of Health (Grant 1 PO1-NS23734), subcontract with the Massachusetts Eye and Ear Infirmar

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Dopamine is critical for courtship behavior in Drosophila melanogaster

    No full text
    Male courtship in the fruit fly Drosophila melanogaster is an innate behavior influenced by sensory input and experience. Various aspects of male courtship behavior including motivation, pleasure, motor control, learning and memory are modulated by dopamine. For instance, the flies with increased dopamine levels show enhanced courtship activity. In Drosophila, there are four known types of dopamine receptors including D1 receptor dDA1, D2 receptor dD2R, D5 receptor DAMB, and the novel dopamine ecdysone receptor DopEcR that binds both dopamine and ecdysone steroid. The aim of this study is to elucidate the role of DopEcR in male courtship behavior. To investigate basal courtship behavior and courtship motivation, we examined 4-5 day old naĂŻve males paired with either decapitated or intact virgin females. Courtship characteristics examined include latency of courtship initiation, courtship duration and bouts, and copulation latency. The genotypes used in this study are the male flies deficient in DopEcR (DER) and dopamine transporter DAT (fumin) as well as the wild-type Canton-S as a control. We hypothesize that DER (decreased dopamine signal only via DopEcR) or fumin (increased dopamine activity) will exhibit decreased or increased basal courtship levels, respectively, compared to wild-type males. Immunohistochemical studies are in progress to map the functional brain regions where the dopamine receptor DopEcR and DAT mediate courtship behavior. Knowledge obtained from this study will provide critical insights into the role of the dopamine system in Drosophila courtship behavior and its potential connections to behavioral plasticity

    Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice

    No full text
    Endotoxin-mediated proinflammatory cytokines play a significant role in the pathogenesis of acute and chronic liver diseases. Heat shock protein 90 (molecular weight, 90 kDa) (hsp90) functions as an important chaperone of lipopolysaccharide (LPS) signaling and is required for the production of proinflammatory cytokines. We hypothesized that inhibition of hsp90 would prevent LPS-induced liver injury by decreasing proinflammatory cytokines. C57BL/6 mice were injected intraperitoneally with an hsp90 inhibitor, 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG), and LPS. Parameters of liver injury, proinflammatory cytokines, and associated mechanisms were studied by in vivo and in vitro experiments. Inhibition of hsp90 by 17-DMAG prevented LPS-induced increases in serum alanine aminotransferase activity and significantly reduced serum tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) protein as well as messenger RNA (mRNA) in liver. Enhanced DNA-binding activity of heat shock transcription factor 1 (HSF1) and induction of target gene heat shock protein 70 (molecular weight, 70 kDa) confirmed hsp90 inhibition in liver. 17-DMAG treatment decreased cluster of differentiation 14 mRNA and LPS-induced nuclear factor kappa light-chain enhancer of activated B cells (NFkappaB) DNA binding without affecting Toll-like receptor 4 mRNA in liver. Mechanistic studies revealed that 17-DMAG-mediated inhibition of TNFalpha showed no effect on LPS-induced NFkappaB promoter-driven reporter activity, but significantly decreased TNFalpha promoter-driven reporter activity. Chromatin immunoprecipitation assays showed that 17-DMAG enhanced HSF1 binding to the TNFalpha promoter, but not the IL-6 promoter, suggesting HSF1 mediated direct inhibition of TNFalpha, but not IL-6. We show that HSF1 indirectly regulates IL-6 by the induction of another transcription factor, activating transcription factor 3. Inhibition of HSF1, using small interfering RNA, prevented 17-DMAG-mediated down-regulation of NFkappaB-binding activity, TNFalpha, and IL-6 induction, supporting a repressive role for HSF1 on proinflammatory cytokine genes during hsp90 inhibition. CONCLUSION: Hsp90 inhibition in vivo reduces proinflammatory cytokines and prevents LPS-induced liver injury likely through repressive action of HSF1. Our results suggest a novel application for 17-DMAG in alleviating LPS-induced liver injury

    An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice

    No full text
    The importance of chemokines in alcoholic liver injury has been implicated. The role of the chemokine, monocyte chemoattractant protein-1 (MCP-1), elevated in patients with alcoholic liver disease is not yet understood. Here, we evaluated the pathophysiological significance of MCP-1 and its receptor, chemokine (C-C motif) receptor 2 (CCR2), in alcoholic liver injury. The Leiber-DeCarli diet containing alcohol or isocaloric control diets were fed to wild-type (WT) and MCP-1-deficient knockout (KO) mice for 6 weeks. In vivo and in vitro assays were performed to study the role of MCP-1 in alcoholic liver injury. MCP-1 was increased in Kupffer cells (KCs) as well as hepatocytes of alcohol-fed mice. Alcohol feeding increased serum alanine aminotransferase in WT and CCR2KO, but not MCP-1KO, mice. Alcohol-induced liver steatosis and triglyceride were attenuated in alcohol-fed MCP-1KO, but high in CCR2KO mice, compared to WT, whereas serum endotoxin was high in alcohol-fed WT and MCP-1KO mice. Expression of liver proinflammatory cytokines tumor necrosis factor alpha, interleukin (IL)-1beta, IL-6, KC/IL-8, intercellular adhesion molecule 1, and cluster of differentiation 68 was induced in alcohol-fed WT, but inhibited in MCP-1KO, mice independent of nuclear factor kappa light-chain enhancer of activated B cell activation in KCs. Oxidative stress, but not cytochrome P450 2E1, was prevented in chronic alcohol-fed MCP-1KO mice, compared to WT. Increased expression of peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma was accompanied by nuclear translocation, DNA binding, and induction of fatty acid metabolism genes acyl coenzyme A oxidase and carnitine palmitoyltransferase 1A in livers of alcohol-fed MCP-1KO mice, compared to WT controls. In vitro assays uncovered an inhibitory effect of recombinant MCP-1 on PPARalpha messenger RNA and peroxisome proliferator response element binding in hepatocytes independent of CCR2. Conclusion: Deficiency of MCP-1 protects mice against alcoholic liver injury, independent of CCR2, by inhibition of proinflammatory cytokines and induction of genes related to fatty acid oxidation, linking chemokines to hepatic lipid metabolism

    Inhibition of heat shock protein 90 alleviates steatosis and macrophage activation in murine alcoholic liver injury

    No full text
    BACKGROUND and AIMS: Heat shock protein 90 (hsp90) is an emerging therapeutic target in chronic liver diseases. Hsp90 plays an important role in liver immune cell activation; however its role in alcoholic liver disease (ALD) remains elusive. Here we hypothesize that hsp90 is crucial in alcohol induced steatosis and pro-inflammatory cytokine production. To test this hypothesis, we employed a pharmacological inhibitor of hsp90, 17-DMAG (17-Dimethylamino-ethylamino-17-demethoxygeldanamycin) in an in vivo mouse model of acute and chronic alcoholic liver injury. METHODS: C57BL/6 mice were given either a single dose of ethanol via oral gavage (acute) or chronically fed alcohol for 2 weeks followed by oral gavage (chronic-binge). 17-DMAG was administered during or at the end of feeding. Liver injury parameters, inflammatory cytokines and lipid metabolism genes were analysed. RESULTS: Our results reveal increased expression of hsp90 in human and mouse alcoholic livers. In vivo inhibition of hsp90, using 17-DMAG, not only prevented but also alleviated alcoholic liver injury, determined by lower serum ALT, AST and reduced hepatic triglycerides. Mechanistic analysis showed that 17-DMAG decreased alcohol mediated oxidative stress, reduced serum endotoxin, decreased inflammatory cells, and diminished sensitization of liver macrophages to LPS, resulting in downregulation of CD14, NFkappaB inhibition, and decreased pro-inflammatory cytokine production. Hsp90 inhibition decreased fatty acid synthesis genes via reduced nuclear SREBP-1 and favoured fatty acid oxidation genes via PPARalpha. CONCLUSIONS: Inhibition of hsp90 decreased alcohol induced steatosis and pro-inflammatory cytokines and inhibited alcoholic liver injury. Hsp90 is therefore relevant in human alcoholic cirrhosis and a promising therapeutic target in ALD. Elsevier B.V. All rights reserved
    corecore