69 research outputs found

    The Hydrologic Regime At Sub-Arctic And Arctic Watersheds: Present And Projected

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2011The wetlands in the Arctic Coastal Plain, Northern Alaska, support a multitude of wildlife and natural resources that depend upon the abundance of water. Observations and climate model simulations show that surface air temperature over the Alaskan arctic coast has risen in recent history. Thus a growing need exists to assess how the hydrology of these arctic wetlands will respond to the warming climate. A synthesis study was conducted combining the analysis of an extensive field campaign, which includes direct measurements of all components of the water balance, with a physically-based hydrologic model forced by downscaled climate projections. Currently, these wetlands exist despite a desert-like annual precipitation and a negative net summer water balance. Although evapotranspiration is the major pathway of water loss, there are multiple non-linear controls that moderate the evapotranspiration rates. At the primary study site within the Barrow Environmental Observatory, shallow ponding of snowmelt water occurs for nearly a month at the vegetated drained thaw lake basin. Modeling studies revealed that the duration and depth of the ponding are only replicated faithfully if the rims of low-centered polygons are represented. Simple model experiments suggest that the polygon type (low- or high-centered) controls watershed-scale runoff, evapotranspiration, and near-surface soil moisture. High-centered polygons increase runoff, while reducing near-surface soil moisture and evapotranspiration. Soil drying was not projected by the end-of-the century but differential ground subsidence could potentially dominate the direct effects of climate warming resulting in a drying of the Arctic Coastal Plain wetlands. A drier surface would increase the susceptibility to fire, which currently is a major part of the Alaskan sub-arctic but not the arctic landscape. High quality pre- and postfire data were collected in the same location in central Seward Peninsula, uniquely documenting short-term soil warming and wettening following a severe tundra fire. Overall, this research concludes that arctic and sub-arctic watershed-scale hydrology is affected by changes in climate, surface cover, and microtopographic structures. It is therefore crucial to merge hydrology, permafrost, vegetation, and geomorphology models and measurements at the appropriate scales to further refine the response of the Arctic Coastal Plain wetlands to climate warming

    Response of Glacier Melt and Discharge to Future Climate Change, Susitna Basin, Alaska

    Get PDF
    A large dam for hydropower with a 67 km long reservoir is proposed in the Susitna basin, leading to multiple studies of the basin. This study focuses on the response of climate change of the Susitna basin glaciers and the effects on basin discharge

    Estimating Future Flood Frequency and Magnitude in Basins Affected by Glacier Wastage

    Get PDF
    INE/AUTC 15.0

    Using Synthetic Aperture Radar to Define Spring Breakup on the Kuparuk River, Northern Alaska

    Get PDF
    Spring runoff measurements of Arctic watersheds are challenging given the remote location and the often dangerous field conditions. This study combines remote sensing techniques and field measurements to evaluate the applicability of synthetic aperture radar (SAR) to defining spring breakup of the braided lower Kuparuk River, North Slope, Alaska. A statistical analysis was carried out on a time series (2001–10) of SAR images acquired from the European Remote-Sensing Satellite (ERS-2) and the Canadian RADARSAT satellite, as well as on measured runoff. On the basis of field information, the SAR images were separated into pre-breakup, breakup, and post-breakup periods. Three variables were analyzed for their suitability to bracket the river breakup period: image brightness, variance in brightness over the river length, and a sum of rank order change analysis. Variance in brightness was found to be the most reliable indicator. A combined use of that variance and sum of rank order change appeared promising when enough images were available. The temporal resolution of imagery served as the major limitation in constraining the timing of the hydrologic event. Challenges associated with spring runoff monitoring and the sensitive nature of SAR likely resulted in an earlier detection of surficial changes by the remote sensing technique compared to the field runoff observations. Given a sufficient temporal resolution, SAR imagery has the potential to improve the spatiotemporal monitoring of Arctic watersheds for river breakup investigations.La mesure de l’écoulement printanier des bassins hydrographiques de l’Arctique n’est pas facile à réaliser en raison de l’éloignement ainsi qu’en raison des conditions souvent dangereuses qui ont cours sur le terrain. Cette étude fait appel à des techniques de télédétection de même qu’aux mesures prises sur le terrain pour évaluer l’applicabilité du radar à synthèse d’ouverture SAR pour définir la débâcle printanière de la basse rivière Kuparuk anastomosée sur la North Slope de l’Alaska. L’analyse statistique d’une série temporelle (2001-2010) d’images SAR acquises à partir du satellite européen de télédétection (ERS-2) et du satellite canadien RADARSAT ainsi que des écoulements mesurés a été effectuée dans le cadre de cette étude. D’après les renseignements recueillis sur le terrain, les images SAR ont été divisées en fonction de la période précédant la débâcle, de la période de la débâcle même et de la période suivant la débâcle. Trois variables ont été analysées afin de déterminer si elles permettaient d’isoler la période de la débâcle de la rivière, soit la luminance de l’image, la variance de la luminance en fonction de la longueur de la rivière et la somme de l’analyse des changements de classement suivant le rang. La variance de la luminance s’est avérée l’indicateur le plus fiable. L’utilisation conjointe de cette variance et de la somme des changements de classement suivant le rang s’avéraient prometteuse lorsque le nombre d’images était suffisant. La résolution temporelle de l’imagerie a constitué la plus grande limitation pour contraindre la temporisation de l’événement hydrologique. Les défis liés à la surveillance de l’écoulement printanier et la nature sensible du SAR ont vraisemblablement donné lieu à la détection précoce des changements superficiels au moyen de la technique de télédétection comparativement aux observations mêmes de l’écoulement printanier. Moyennant une résolution temporelle suffisante, l’imagerie SAR pourrait permettre d’améliorer la surveillance spatiotemporelle des bassins hydrographiques de l’Arctique en vue de l’étude des débâcles printaniers

    The evolution of ice-wedge polygon networks in tundra fire scars

    Get PDF
    Abstract In response to increasing temperatures and precipitation in the Arctic, ice-rich permafrost landscapes are undergoing rapid changes. In permafrost lowland landscapes, polygonal ice wedges are especially vulnerable, and their melting induces widespread subsidence triggering the transition from low-centered (LCP) to high-centered polygons (HCP) by forming degrading troughs. This process has an important impact on surface hydrology, as the connectivity of such trough networks determines the rate of drainage of an entire landscape (Liljedahl et al., 2016). While scientists have observed this degradation trend throughout large domains in the polygonal patterned Arctic landscape over timescales of multiple decades, it is especially evident in disturbed areas such as fire scars (Jones et al., 2015). Here, wildfires removed the insulating organic soil layer. We can therefore observe the LCP-to-HCP transition within only several years. Until now, studies on quantifying trough connectivity have been limited to local field studies and sparse time series only. With high-resolution Earth observation data, a more comprehensive analysis is possible. However, when considering the vast and ever-growing volumes of data generated, highly automated and scalable methods are needed that allow scientists to extract information on the geomorphic state and on changes over time of ice-wedge trough networks. In this study, we combine very-high-resolution (VHR) aerial imagery and comprehensive databases of segmented polygons derived from VHR optical satellite imagery (Witharana et al., 2018) to investigate the changing polygonal ground landscapes and their environmental implications in fire scars in Northern and Western Alaska. Leveraging the automated and scalable nature of our recently introduced approach (Rettelbach et al., 2021), we represent the polygon networks as graphs (a concept from computer science to describe complex networks) and use graph metrics to describe the state of these (hydrological) trough networks. Due to a lack of historical data, we cannot investigate a dense time series of a single representative study area on the evolution of the network, but rather leverage the possibilities of a space-for-time substitution. Thus, we focus on data from multiple fire scars of different ages (up to 120 years between date of disturbance and date of acquisition). With our approach, we might infer past and future states of degradation from the currently prevailing spatial patterns showing how this type of disturbed landscape evolves over space and time. It further allows scientists to gain insights into the complex geomorphology, hydrology, and ecology of landscapes, thus helping to quantify how they interact with climate change

    Large CO\u3csub\u3e2\u3c/sub\u3e and CH\u3csub\u3e4\u3c/sub\u3e emissions from polygonal tundra during spring thaw in northern Alaska

    Get PDF
    The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil-core thawing experiment. During a 2 week period prior to snowmelt in 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain-on-snow events enhancing soil cracking. Controlled laboratory experiment revealed that as surface ice thaws, an immediate, large pulse of trapped gases is emitted. These results suggest that the Arctic CO2 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink

    A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes

    Get PDF
    Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic

    Brukarstyrd inläggning : MANUAL FÖR UTBILDNING OCH IMPLEMENTERING

    Get PDF
    Personer med självskadebeteende och komplex psykisk ohälsa kan förväntas vara suicidnära. De kommer att vara suicidnära under hela den Brukarstyrda inläggningen (BI). På tre dagar kan vi inte ändra på det. Det kan ta år tills stress inte längre triggar suicidalitet. Det vi kan hjälpa till med under BI är stressen.Denna manual (med tillhörande utbildning som tillhandahålls som uppdragsutbildning för hälso- och sjukvårdspersonal via Lunds universitet) är vårt bidrag till att sprida kunskap och stötta psykiatriska verksamheter som är intresserade av att erbjuda Brukarstyrd inläggning
    • …
    corecore