6 research outputs found

    The CELLULOSE SYNTHASE-LIKE A and CELLULOSE SYNTHASE-LIKE C families: recent advances and future perspectives

    Get PDF
    The CELLULOSE SYNTHASE (CESA) superfamily of proteins contains several sub-families of closely related CELLULOSE SYNTHASE-LIKE (CSL) sequences. Among these, the CSLA and CSLC families are closely related to each other and are the most evolutionarily divergent from the CESA family. Significant progress has been made with the functional characterization of CSLA and CSLC genes, which have been shown to encode enzymes with 1,4-β-glycan synthase activities involved in the biosynthesis of mannan and possibly xyloglucan backbones, respectively. This review examines recent work on the CSLA and CSLC families from evolutionary, molecular, and biochemical perspectives. We pose a series of questions, whose answers likely will provide further insight about the specific functions of members of the CSLA and CSLC families and about plant polysaccharide biosynthesis is general

    Peroxisomal alanine : glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana

    Full text link
    At least two glyoxylate aminotransferases are hypothesized to participate in the steps of photorespiration located in peroxisomes. Until recently, however, genes encoding these enzymes had not been identified. We describe the isolation and characterization of an alanine : glyoxylate aminotransferase ( AGT1 , formerly AGT ) cDNA from Arabidopsis thaliana . Southern blot analysis confirmed that Arabidopsis AGT1 is encoded by a single gene. Homologs of this class IV aminotransferase are also known in other plants, animals, and methylotrophic bacteria, suggesting an ancient evolutionary origin of this enzyme. AGT1 transcripts were present in all tissues of Arabidopsis , but were most abundant in green, leafy tissues. Purified, recombinant Arabidopsis AGT1 expressed in Escherichia coli catalyzed three transamination reactions using the following amino donor : acceptor combinations: alanine : glyoxylate, serine : glyoxylate, and serine : pyruvate. AGT1 had the highest specific activity with the serine : glyoxylate transamination, and apparent K m measurements indicate that this is the preferred in vivo reaction. In vitro import experiments and subcellular fractionations localized AGT1 to peroxisomes. Sequence analysis of the photorespiratory sat mutants revealed a single nucleotide substitution in the AGT1 gene from these plants. This transition mutation is predicted to result in a proline-to-leucine substitution at residue 251 of AGT1. When this mutation was engineered into the recombinant AGT1 protein, enzymatic activity using all three donor : acceptor pairs was abolished. We conclude that Arabidopsis AGT1 is a peroxisomal photorespiratory enzyme that catalyzes transamination reactions with multiple substrates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73264/1/j.1365-313x.2001.00961.x.pd

    Crystal sructure of photorespiratory alanine: Glyoxylate aminotransferase 1 (AGT1) from \u3ci\u3eArabidopsis thaliana\u3c/i\u3e

    No full text
    Photorespiration is an energetically costly metabolic pathway for the recycling of phosphoglycolate produced by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) to phosphoglycerate. Arabidopsis alanine:glyoxylate aminotransferase 1 (AGT1) is a peroxisomal aminotransferase with a central role in photorespiration. This enzyme catalyzes various aminotransferase reactions, including serine:glyoxylate, alanine:glyoxylate, and asparagine:glyoxylate transaminations. To better understand structural features that govern the specificity of this enzyme, its crystal structures in the native form (2.2-Å resolution) and in the presence of l-serine (2.1-Å resolution) were solved. The structures confirm that this enzyme is dimeric, in agreement with studies of the active enzyme in solution. In the crystal, another dimer related by noncrystallographic symmetry makes close interactions to form a tetramer mediated in part by an extra carboxyl-terminal helix conserved in plant homologs of AGT1. Pyridoxal 5′-phosphate (PLP) is bound at the active site but is not held in place by covalent interactions. Residues Tyr35′ and Arg36′, entering the active site from the other subunits in the dimer, mediate interactions between AGT and l-serine when used as a substrate. In comparison, AGT1 from humans and AGT1 from Anabaena lack these two residues and instead position a tyrosine ring into the binding site, which accounts for their preference for l-alanine instead of l-serine. The structure also rationalizes the phenotype of the sat mutant, Pro251 to Leu, which likely affects the dimer interface near the catalytic site. This structural model of AGT1 provides valuable new information about this protein that may enable improvements to the efficiency of photorespiration

    Functional Genomic Analysis Supports Conservation of Function Among Cellulose Synthase-Like A Gene Family Members and Suggests Diverse Roles of Mannans in Plants

    Get PDF
    Mannan polysaccharides are widespread among plants, where they serve as structural elements in cell walls, as carbohydrate reserves, and potentially perform other important functions. Previous work has demonstrated that members of the cellulose synthase-like A (CslA) family of glycosyltransferases from Arabidopsis (Arabidopsis thaliana), guar (Cyamopsis tetragonolobus), and Populus trichocarpa catalyze β-1,4-mannan and glucomannan synthase reactions in vitro. Mannan polysaccharides and homologs of CslA genes appear to be present in all lineages of land plants analyzed to date. In many plants, the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono- and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced in insect cells, and each CslA protein catalyzed mannan and glucomannan synthase reactions in vitro. Microarray mining and quantitative real-time reverse transcription-polymerase chain reaction analysis demonstrated that transcripts of Arabidopsis and loblolly pine (Pinus taeda) CslA genes display tissue-specific expression patterns in vegetative and floral tissues. Glycan microarray analysis of Arabidopsis indicated that mannans are present throughout the plant and are especially abundant in flowers, siliques, and stems. Mannans are also present in chloronemal and caulonemal filaments of Physcomitrella patens, where they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall structure and carbohydrate storage
    corecore