297 research outputs found

    How do people learn how to plan?

    No full text
    How does the brain learn how to plan? We reverse-engineer people's underlying learning mechanisms by combining rational process models of cognitive plasticity with recently developed empirical methods that allow us to trace the temporal evolution of people's planning strategies. We find that our Learned Value of Computation model (LVOC) accurately captures people's average learning curve. However, there were also substantial individual differences in metacognitive learning that are best understood in terms of multiple different learning mechanisms -- including strategy selection learning. Furthermore, we observed that LVOC could not fully capture people's ability to adaptively decide when to stop planning. We successfully extended the LVOC model to address these discrepancies. Our models broadly capture people's ability to improve their decision mechanisms and represent a significant step towards reverse-engineering how the brain learns increasingly more effective cognitive strategies through its interaction with the environment

    Coexistence of 'alpha+ 208Pb' cluster structures and single-particle excitations in 212Po

    Full text link
    Excited states in 212Po have been populated by alpha transfer using the 208Pb(18O,14C) reaction at 85MeV beam energy and studied with the EUROBALL IV gamma multidetector array. The level scheme has been extended up to ~ 3.2 MeV excitation energy from the triple gamma coincidence data. Spin and parity values of most of the observed states have been assigned from the gamma angular distributions and gamma -gamma angular correlations. Several gamma lines with E(gamma) < 1 MeV have been found to be shifted by the Doppler effect, allowing for the measurements of the associated lifetimes by the DSAM method. The values, found in the range [0.1-0.6] ps, lead to very enhanced E1 transitions. All the emitting states, which have non-natural parity values, are discussed in terms of alpha-208Pb structure. They are in the same excitation-energy range as the states issued from shell-model configurations.Comment: 21 pages, 19 figures, corrected typos, revised arguments in Sect. III

    DSAM lifetime measurements for the chiral pair in 194Tl

    Get PDF
    Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of 194Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario

    Reasoning with heuristics

    Get PDF
    Which rules should guide our reasoning? Human reasoners often use reasoning shortcuts, called heuristics, which function well in some contexts but lack the universality of reasoning rules like deductive implication or inference to the best explanation. Does it follow that human reasoning is hopelessly irrational? I argue: no. Heuristic reasoning often represents human reasoners reaching a local rational maximum, reasoning more accurately than if they try to implement more “ideal” rules of reasoning. I argue this is a genuine rational achievement. Our ideal rational advisors would advise us to reason with heuristic rules, not more complicated ideal rules. I argue we do not need a radical new account of epistemic norms to make sense of the success of heuristic reasoning

    Relating industrial symbiosis and circular economy to the sustainable development debate

    Get PDF
    Industrial Symbiosis (IS) is a business-focused collaborative approach oriented towards resource efficiency that has been theorised and studied mainly over the last twenty-five years. Recently, IS seems to have found a renewed impetus in the framework of the Circular Economy (CE), a novel approach to sustainability and Sustainable Development (SD) that has been rapidly gaining momentum world-wide. This opening chapter of the book provides an introduction to the concepts of IS, CE and SD, and summarizes their complex evolutionary paths, recalling the rel-evant developments and implementation challenges. In addition, the authors point out the divergences and interrelations of these concepts, both among themselves and with other related concepts and research fields, such as industrial ecology, eco-logical modernization and the green economy. Furthermore, the potential contribu-tion of IS and the CE to SD is briefly discussed, also highlighting critical issues and trade-offs, as well as gaps in research and application, especially relating to the so-cial component of sustainability. Particular attention is given to the potential role of IS in the achievement of targets connected to the Sustainable Development Goals set in the UN Agenda 2030. The recent advances in the IS and CE discussion in the context of the SD research community are further explored, with particular empha-sis on the contribution of the International Sustainable Development Research So-ciety (ISDRS) and its 24th annual conference organised in Messina, Italy, in 2018. The programme of that conference, indeed, included specific tracks on the above-mentioned themes, the contents of which are briefly commented on here, after an overview on the whole conference and the main cross-cutting concepts emerged. In the last part of the chapter, a brief description of the chapters collected in the book is presented. These contributions describe and discuss theoretical frameworks, methodological approaches and/or experiences and case studies where IS and the principles of CE are applied in different geographical context and at different scales to ultimately improve the sustainability of the current production patterns

    Coexisting Cyclic Parthenogens Comprise a Holocene Species Flock in Eubosmina

    Get PDF
    Background: Mixed breeding systems with extended clonal phases and weak sexual recruitment are widespread in nature but often thought to impede the formation of discrete evolutionary clusters. Thus, cyclic parthenogens, such as cladocerans and rotifers, could be predisposed to ‘‘species problems’ ’ and a lack of discrete species. However, species flocks have been proposed for one cladoceran group, Eubosmina, where putative species are sympatric, and there is a detailed paleolimnological record indicating a Holocene age. These factors make the Eubosmina system suitable for testing the hypotheses that extended clonal phases and weak sexual recruitment inhibit speciation. Although common garden experiments have revealed a genetic component to the morphotypic variation, the evolutionary significance of the morphotypes remains controversial. Methodology/Principal Findings: In the present study, we tested the hypothesis of a single polymorphic species (i.e., mixing occurs but selection maintains genes for morphology) in four northern European lakes where the morphotypes coexist. Our evidence is based on nuclear DNA sequence, mitochondrial DNA sequence, and morphometric analysis of coexisting morphotypes. We found significant genetic differentiation, genealogical exclusivity, and morphometric differentiation for coexisting morphotypes. Conclusions: We conclude that the studied morphotypes represent a group of young species undergoing speciation wit
    corecore