8 research outputs found

    Right Ventricular Functional Abnormalities in Arrhythmogenic Cardiomyopathy: Association With Life-Threatening Ventricular Arrhythmias

    Get PDF
    OBJECTIVES: This study aimed to perform an external validation of the value of right ventricular (RV) deformation patterns and RV mechanical dispersion in patients with arrhythmogenic cardiomyopathy (AC). Secondly, this study assessed the association of these parameters with life-threatening ventricular arrhythmia (VA). BACKGROUND: Subtle RV dysfunction assessed by echocardiographic deformation imaging is valuable in AC diagnosis and risk prediction. Two different methods have emerged, the RV deformation pattern recognition and RV mechanical dispersion, but these have neither been externally validated nor compared. METHODS: We analyzed AC probands and mutation-positive family members, matched from 2 large European referral centers. We performed speckle tracking echocardiography, whereby we classified the subtricuspid deformation patterns from normal to abnormal and assessed RV mechanical dispersion from 6 segments. We defined VA as sustained ventricular tachycardia, appropriate implantable cardioverter-defibrillator therapy, or aborted cardiac arrest. RESULTS: We included 160 subjects, 80 from each center (43% proband, 55% women, age 41 ± 17 years). VA had occurred in 47 (29%) subjects. In both cohorts, patients with a history of VA showed abnormal deformation patterns (96% and 100%) and had greater RV mechanical dispersion (53 ± 30 ms vs. 30 ± 21 ms; p < 0.001 for the total cohort). Both parameters were independently associated to VA (adjusted odds ratio: 2.71 [95% confidence interval: 1.47 to 5.00] per class step-up, and 1.26 [95% confidence interval: 1.07 to 1.49]/10 ms, respectively). The association with VA significantly improved when adding RV mechanical dispersion to pattern recognition (net reclassification improvement 0.42; p = 0.02 and integrated diagnostic improvement 0.06; p = 0.01). CONCLUSIONS: We externally validated 2 RV dysfunction parameters in AC. Adding RV mechanical dispersion to RV deformation patterns significantly improved the association with life-threatening VA, indicating incremental value

    Monitoring of Myocardial Involvement in Early Arrhythmogenic Right Ventricular Cardiomyopathy Across the Age Spectrum

    Get PDF
    BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by fibrofatty replacement of primarily the right ventricular myocardium, a substrate for life-threatening ventricular arrhythmias (VAs). Repeated cardiac imaging of at-risk relatives is important for early disease detection. However, it is not known whether screening should be age-tailored. OBJECTIVES: The goal of this study was to assess the need for age-tailoring of follow-up protocols in early ARVC by evaluating myocardial disease progression in different age groups. METHODS: We divided patients with early-stage ARVC and genotype-positive relatives without overt structural disease and VA at first evaluation into 3 groups: age 50 years without overt ARVC phenotype at first evaluation. Unlike recommended by current guidelines, our study suggests that follow-up of ARVC patients and relatives should not stop at older age

    Integrating Exercise Into Personalized Ventricular Arrhythmia Risk Prediction in Arrhythmogenic Right Ventricular Cardiomyopathy

    Get PDF
    BACKGROUND: Exercise is associated with sustained ventricular arrhythmias (VA) in Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) but is not included in the ARVC risk calculator (arvcrisk.com). The objective of this study is to quantify the influence of exercise at diagnosis on incident VA risk and evaluate whether the risk calculator needs adjustment for exercise. METHODS: We interviewed ARVC patients without sustained VA at diagnosis about their exercise history. The relationship between exercise dose 3 years preceding diagnosis (average METh/wk) and incident VA during follow-up was analyzed with time-to-event analysis. The incremental prognostic value of exercise to the risk calculator was evaluated by Cox models. RESULTS: We included 176 patients (male, 43.2%; age, 37.6±16.1 years) from 3 ARVC centers, of whom 53 (30.1%) developed sustained VA during 5.4 (2.7-9.7) years of follow-up. Exercise at diagnosis showed a dose-dependent nonlinear relationship with VA, with no significant risk increase 18, >24, and >36 METh/wk), was significantly associated with VA (hazard ratios, 2.53-2.91) but was also correlated with risk factors currently in the risk calculator model. Thus, adding athlete status to the model did not change the C index of 0.77 (0.71-0.84) and showed no significant improvement (Akaike information criterion change, <2). CONCLUSIONS: Exercise at diagnosis was dose dependently associated with risk of sustained VA in ARVC patients but only above 15 to 30 METh/wk. Exercise does not appear to have incremental prognostic value over the risk calculator. The ARVC risk calculator can be used accurately in athletic patients without modification

    Sudden Cardiac Death Prediction in Arrhythmogenic Right Ventricular Cardiomyopathy: A Multinational Collaboration.

    Get PDF
    BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with ventricular arrhythmias (VA) and sudden cardiac death (SCD). A model was recently developed to predict incident sustained VA in patients with ARVC. However, since this outcome may overestimate the risk for SCD, we aimed to specifically predict life-threatening VA (LTVA) as a closer surrogate for SCD. METHODS: We assembled a retrospective cohort of definite ARVC cases from 15 centers in North America and Europe. Association of 8 prespecified clinical predictors with LTVA (SCD, aborted SCD, sustained, or implantable cardioverter-defibrillator treated ventricular tachycardia >250 beats per minute) in follow-up was assessed by Cox regression with backward selection. Candidate variables included age, sex, prior sustained VA (≥30s, hemodynamically unstable, or implantable cardioverter-defibrillator treated ventricular tachycardia; or aborted SCD), syncope, 24-hour premature ventricular complexes count, the number of anterior and inferior leads with T-wave inversion, left and right ventricular ejection fraction. The resulting model was internally validated using bootstrapping. RESULTS: A total of 864 patients with definite ARVC (40±16 years; 53% male) were included. Over 5.75 years (interquartile range, 2.77-10.58) of follow-up, 93 (10.8%) patients experienced LTVA including 15 with SCD/aborted SCD (1.7%). Of the 8 prespecified clinical predictors, only 4 (younger age, male sex, premature ventricular complex count, and number of leads with T-wave inversion) were associated with LTVA. Notably, prior sustained VA did not predict subsequent LTVA (P=0.850). A model including only these 4 predictors had an optimism-corrected C-index of 0.74 (95% CI, 0.69-0.80) and calibration slope of 0.95 (95% CI, 0.94-0.98) indicating minimal over-optimism. CONCLUSIONS: LTVA events in patients with ARVC can be predicted by a novel simple prediction model using only 4 clinical predictors. Prior sustained VA and the extent of functional heart disease are not associated with subsequent LTVA events

    A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Aims Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients. Methods and results Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 ± 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44–9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73–0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92–0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.6% reduction of ICD placements with the same proportion of protected patients (P < 0.001). Conclusion Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICD

    Sudden Cardiac Death Prediction in Arrhythmogenic Right Ventricular Cardiomyopathy: A Multinational Collaboration

    Get PDF
    BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with ventricular arrhythmias (VA) and sudden cardiac death (SCD). A model was recently developed to predict incident sustained VA in patients with ARVC. However, since this outcome may overestimate the risk for SCD, we aimed to specifically predict life-threatening VA (LTVA) as a closer surrogate for SCD. METHODS: We assembled a retrospective cohort of definite ARVC cases from 15 centers in North America and Europe. Association of 8 prespecified clinical predictors with LTVA (SCD, aborted SCD, sustained, or implantable cardioverter-defibrillator treated ventricular tachycardia >250 beats per minute) in follow-up was assessed by Cox regression with backward selection. Candidate variables included age, sex, prior sustained VA (≥30s, hemodynamically unstable, or implantable cardioverter-defibrillator treated ventricular tachycardia; or aborted SCD), syncope, 24-hour premature ventricular complexes count, the number of anterior and inferior leads with T-wave inversion, left and right ventricular ejection fraction. The resulting model was internally validated using bootstrapping. RESULTS: A total of 864 patients with definite ARVC (40±16 years; 53% male) were included. Over 5.75 years (interquartile range, 2.77-10.58) of follow-up, 93 (10.8%) patients experienced LTVA including 15 with SCD/aborted SCD (1.7%). Of the 8 prespecified clinical predictors, only 4 (younger age, male sex, premature ventricular complex count, and number of leads with T-wave inversion) were associated with LTVA. Notably, prior sustained VA did not predict subsequent LTVA (P=0.850). A model including only these 4 predictors had an optimism-corrected C-index of 0.74 (95% CI, 0.69-0.80) and calibration slope of 0.95 (95% CI, 0.94-0.98) indicating minimal over-optimism. CONCLUSIO

    A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    AIMS: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients. METHODS AND RESULTS: Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 ± 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44-9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73-0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92-0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.6% reduction of ICD placements with the same proportion of protected patients (P < 0.001). CONCLUSION: Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICDs (www.arvcrisk.com)
    corecore