3,633 research outputs found

    Managing knowledge within regeneration practice

    Get PDF

    Public administration in an era of austerity

    Get PDF

    A classification of scalar field potentials with cosmological scaling solutions

    Get PDF
    An attractive method of obtaining an effective cosmological constant at the present epoch is through the potential energy of a scalar field. Considering models with a perfect fluid and a scalar field, we classify all potentials for which the scalar field energy density scales as a power-law of the scale factor when the perfect fluid density dominates. There are three possibilities. The first two are well known; the much-investigated exponential potentials have the scalar field mimicking the evolution of the perfect fluid, while for negative power-laws, introduced by Ratra and Peebles, the scalar field density grows relative to that of the fluid. The third possibility is a new one, where the potential is a positive power-law and the scalar field energy density decays relative to the perfect fluid. We provide a complete analysis of exact solutions and their stability properties, and investigate a range of possible cosmological applications.Comment: 8 pages RevTeX file with four figures incorporated (uses RevTeX and epsf

    The lepton asymmetry: the last chance for a critical-density cosmology?

    Get PDF
    We use a wide range of observations to constrain cosmological models possessing a significant asymmetry in the lepton sector, which offer perhaps the best chance of reconciling a critical-density Universe with current observations. The simplest case, with massless neutrinos, fails to fit many experimental data and does not lead to an acceptable model. If the neutrinos have mass of order one electron-volt (which is favoured by some neutrino observations), then models can be implemented which prove a good fit to microwave anisotropies and large-scale structure data. However, taking into account the latest microwave anisotropy results, especially those from Boomerang, we show that the model can no longer accommodate the observed baryon fraction in clusters. Together with the observed acceleration of the present Universe, this puts considerable pressure on such critical-density models

    Can Inflation be Falsified?

    Full text link
    Despite its central role in modern cosmology, doubts are often expressed as to whether cosmological inflation is really a falsifiable theory. We distinguish two facets of inflation, one as a theory of initial conditions for the hot big bang and the other as a model for the origin of structure in the Universe. We argue that the latter can readily be excluded by observations, and that there are also a number of ways in which the former can find itself in conflict with observational data. Both aspects of the theory are indeed falsifiable.Comment: 7 pages LaTeX file with two figures incorporated by epsf. Fifth Prize in Gravity Research Foundation Essay Competition. To appear, General Relativity and Gravitatio

    Cosmological parameter estimation and the spectral index from inflation

    Get PDF
    Accurate estimation of cosmological parameters from microwave background anisotropies requires high-accuracy understanding of the cosmological model. Normally, a power-law spectrum of density perturbations is assumed, in which case the spectral index nn can be measured to around ±0.004\pm 0.004 using microwave anisotropy satellites such as MAP and Planck. However, inflationary models generically predict that the spectral index nn of the density perturbation spectrum will be scale-dependent. We carry out a detailed investigation of the measurability of this scale dependence by Planck, including the influence of polarization on the parameter estimation. We also estimate the increase in the uncertainty in all other parameters if the scale dependence has to be included. This increase applies even if the scale dependence is too small to be measured unless it is assumed absent, but is shown to be a small effect. We study the implications for inflation models, beginning with a brief examination of the generic slow-roll inflation situation, and then move to a detailed examination of a recently-devised hybrid inflation model for which the scale dependence of nn may be observable.Comment: 6 pages LaTeX file with one figure incorporated (uses mn.sty and epsf). Important modifications to result

    Generalized Slow Roll Conditions and the Possibility of Intermediate Scale Inflation in Scalar-Tensor Theory

    Get PDF
    Generalized slow roll conditions and parameters are obtained for a general form of scalar-tensor theory (with no external sources), having arbitrary functions describing a nonminimal gravitational coupling F(\phi), a Kahler-like kinetic function k(\phi), and a scalar potential V(\phi). These results are then used to analyze a simple toy model example of chaotic inflation with a single scalar field \phi and a standard Higgs potential and a simple gravitational coupling function. In this type of model inflation can occur with inflaton field values at an intermediate scale of roughly 10^{11} GeV when the particle physics symmetry breaking scale is approximately 1 TeV, provided that the theory is realized within the Jordan frame. If the theory is realized in the Einstein frame, however, the intermediate scale inflation does not occur.Comment: 14 pages, no figs. Accepted to Classical and Quantum Gravit

    Slow-roll inflation with a Gauss-Bonnet correction

    Full text link
    We consider slow-roll inflation for a single scalar field with an arbitrary potential and an arbitrary nonminimal coupling to the Gauss-Bonnet term. By introducing a combined hierarchy of Hubble and Gauss-Bonnet flow functions, we analytically derive the power spectra of scalar and tensor perturbations. The standard consistency relation between the tensor-to-scalar ratio and the spectral index of tensor perturbations is broken. We apply this formalism to a specific model with a monomial potential and an inverse monomial Gauss-Bonnet coupling and constrain it by the 7-year Wilkinson Microwave Anisotropy Probe data. The Gauss-Bonnet term with a positive (or negative) coupling may lead to a reduction (or enhancement) of the tensor-to-scalar ratio and hence may revive the quartic potential ruled out by recent cosmological data.Comment: 7 pages, 2 figures, RevTeX, references added, published versio
    • 

    corecore