18 research outputs found
Dissociable Effects of Reward on Attentional Learning: From Passive Associations to Active Monitoring
Visual selective attention (VSA) is the cognitive function that regulates ongoing processing of retinal input in order for selected representations to gain privileged access to perceptual awareness and guide behavior, facilitating analysis of currently relevant information while suppressing the less relevant input. Recent findings indicate that the deployment of VSA is shaped according to past outcomes. Targets whose selection has led to rewarding outcomes become relatively easier to select in the future, and distracters that have been ignored with higher gains are more easily discarded. Although outcomes (monetary rewards) were completely predetermined in our prior studies, participants were told that higher rewards would follow more efficient responses. In a new experiment we have eliminated the illusory link between performance and outcomes by informing subjects that rewards were randomly assigned. This trivial yet crucial manipulation led to strikingly different results. Items that were associated more frequently with higher gains became more difficult to ignore, regardless of the role (target or distracter) they played when differential rewards were delivered. Therefore, VSA is shaped by two distinct reward-related learning mechanisms: one requiring active monitoring of performance and outcome, and a second one detecting the sheer association between objects in the environment (whether attended or ignored) and the more-or-less rewarding events that accompany them
Treatment with a corticotrophin releasing factor 2 receptor agonist modulates skeletal muscle mass and force production in aged and chronically ill animals
<p>Abstract</p> <p>Background</p> <p>Muscle weakness is associated with a variety of chronic disorders such as emphysema (EMP) and congestive heart failure (CHF) as well as aging. Therapies to treat muscle weakness associated with chronic disease or aging are lacking. Corticotrophin releasing factor 2 receptor (CRF2R) agonists have been shown to maintain skeletal muscle mass and force production in a variety of acute conditions that lead to skeletal muscle wasting.</p> <p>Hypothesis</p> <p>We hypothesize that treating animals with a CRF2R agonist will maintain skeletal muscle mass and force production in animals with chronic disease and in aged animals.</p> <p>Methods</p> <p>We utilized animal models of aging, CHF and EMP to evaluate the potential of CRF2R agonist treatment to maintain skeletal muscle mass and force production in aged animals and animals with CHF and EMP.</p> <p>Results</p> <p>In aged rats, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater extensor digitorum longus (EDL) force production, EDL mass, soleus mass and soleus force production compared to age matched untreated animals. In the hamster EMP model, we demonstrate that treatment with a CRF2R agonist for up to 5 months results in greater EDL force production in EMP hamsters when compared to vehicle treated EMP hamsters and greater EDL mass and force in normal hamsters when compared to vehicle treated normal hamsters. In the rat CHF model, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater EDL and soleus muscle mass and force production in CHF rats and normal rats when compared to the corresponding vehicle treated animals.</p> <p>Conclusions</p> <p>These data demonstrate that the underlying physiological conditions associated with chronic diseases such as CHF and emphysema in addition to aging do not reduce the potential of CRF2R agonists to maintain skeletal muscle mass and force production.</p
ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease
Objective: To assess the prevalence, nature, and associated phenotypes of ATP13A2
gene mutations among patients with juvenile parkinsonism (onset21 years) or young onset (between
21 and 40 years) Parkinson disease (YOPD). Methods: We studied 46 patients, mostly from Italy or
Brazil, including 11 with juvenile parkinsonism and 35 with YOPD. Thirty-three cases were sporadic
and 13 had positive family history compatible with autosomal recessive inheritance. Forty-two had
only parkinsonian signs, while four (all juvenile-onset) had multisystemic involvement. The whole
ATP13A2 coding region (29 exons) and exon-intron boundaries were sequenced from genomic DNA.
Results: A novel homozygous missense mutation (Gly504Arg) was identified in one sporadic case from
Brazil with juvenile parkinsonism. This patient had symptoms onset at age 12, levodopa-responsive
severe akinetic-rigid parkinsonism, levodopa-induced motor fluctuations and dyskinesias, severe visual
hallucinations, and supranuclear vertical gaze paresis, but no pyramidal deficit nor dementia.
Brain CT scan showed moderate diffuse atrophy. Furthermore, two Italian cases with YOPD without
atypical features carried a novel missense mutation (Thr12Met, Gly533Arg) in single heterozygous
state. Conclusions: We confirm that ATP13A2 homozygous mutations are associated with human
parkinsonism, and expand the associated genotypic and clinical spectrum, by describing a homozygous
missense mutation in this gene in a patient with a phenotype milder than that initially associated
with ATP13A2 mutations (Kufor-Rakeb syndrome). Our data also suggest that ATP13A2 single heterozygous
mutations might be etiologically relevant for patients with YOPD and further studies of this
gene in Parkinson disease are warranted
ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease.
Objective: To assess the prevalence, nature, and associated phenotypes of ATP13A2 gene mutations among patients with juvenile parkinsonism (onset_21 years) or young onset (between 21 and 40 years) Parkinson disease (YOPD). Methods: We studied 46 patients, mostly from Italy or Brazil, including 11 with juvenile parkinsonism and 35 with YOPD. Thirty-three cases were sporadic and 13 had positive family history compatible with autosomal recessive inheritance. Forty-two had only parkinsonian signs, while four (all juvenile-onset) had multisystemic involvement. The whole ATP13A2 coding region (29 exons) and exon-intron boundaries were sequenced from genomic DNA. Results: A novel homozygous missense mutation (Gly504Arg) was identified in one sporadic case from Brazil with juvenile parkinsonism. This patient had symptoms onset at age 12, levodopa-responsive severe akinetic-rigid parkinsonism, levodopa-induced motor fluctuations and dyskinesias, severe visual hallucinations, and supranuclear vertical gaze paresis, but no pyramidal deficit nor dementia. Brain CT scan showed moderate diffuse atrophy. Furthermore, two Italian cases with YOPD without atypical features carried a novel missense mutation (Thr12Met, Gly533Arg) in single heterozygous state. Conclusions: We confirm that ATP13A2 homozygous mutations are associated with human parkinsonism, and expand the associated genotypic and clinical spectrum, by describing a homozygous missense mutation in this gene in a patient with a phenotype milder than that initially associated
with ATP13A2 mutations (Kufor-Rakeb syndrome). Our data also suggest that ATP13A2 single heterozygous mutations might be etiologically relevant for patients with YOPD and further studies of this gene in Parkinson disease are warranted
Oxidative DNA damage induces hypomethylation in a compromised base excision repair colorectal tumourigenesis
Background:A compromised base excision repair (BER) promotes carcinogenesis by accumulating oxidative DNA-damaged products as observed in MUTYH-associated polyposis, a hereditary colorectal cancer syndrome marked by adenomas and cancers with an accumulation of 8-oxoguanine. Remarkably, DNA global demethylation has been shown to be mediated by BER, suggesting a relevant interplay with early colorectal tumourigenesis. To check this hypothesis, we investigated a cohort of 49 adenomas and 10 carcinomas, derived from 17 MUTYH-associated polyposis patients; as adenoma controls, we used a set of 36 familial adenomatous polyposis and 24 sporadic polyps.Methods:Samples were analysed for their mutational and epigenetic status, measured as global LINE-1 (long interspersed nuclear element) and gene-specific LINE-1 MET methylation by mass spectrometry and pyrosequencing.Results:MUTYH-associated polyposis adenomas were strikingly more hypomethylated than familial adenomatous and sporadic polyps for both DNA demethylation markers (P=0.032 and P=0.007 for LINE-1; P=0.004 and P<0.0001 for LINE-1 MET, respectively) with levels comparable to those of the carcinomas derived from the same patients. They also had mutations due mainly to KRAS/NRAS p.G12C, which was absent in the controls (P<0.0001 for both sets).Conclusions:Our results show that DNA demethylation, together with specific KRAS/NRAS mutations, drives the early steps of oxidative damage colorectal tumourigenesis.British Journal of Cancer advance online publication, 31 January 2017; doi:10.1038/bjc.2017.9 www.bjcancer.com