60 research outputs found
In-situ X-ray tomographic imaging study of gas and structural evolution in a commercial Li-ion pouch cell
Gas generation within Li-ion batteries (LIB) can lead to an increase in resistance, thereby, reducing their cycle lifetime. The chance of catastrophic failure via internal gas evolution may increase as a function of cell size and capacity. However, in-situ studies of gas evolution at the cell level are very limited due to limited number of techniques that can effectively probe this. Hence, for the first time, we employed high-energy X-ray tomography to non-destructively observe the structural evolution (gas and electrodes) as a function of cycle numbers for a 400 mAh commercial Li-ion pouch cell. Gas agglomeration led to cell deformation in different areas were observed in 4D (3D + time), the subsequent quantification including the volume fraction, surface area and thickness showed a heterogeneous gas distribution, revealing the degradation mechanism involving the coalescence of gas. This study demonstrates a feasible case of the use of lab-based X-ray to investigate the cell degradation and monitor state of health (SOH) by tracking the thickness in-situ, providing practical guidance for designing safer pouch cells
G Electronics and Data Acquisition (Forward-Angle Measurements)
The G parity-violation experiment at Jefferson Lab (Newport News, VA) is
designed to determine the contribution of strange/anti-strange quark pairs to
the intrinsic properties of the proton. In the forward-angle part of the
experiment, the asymmetry in the cross section was measured for
elastic scattering by counting the recoil protons corresponding to the two
beam-helicity states. Due to the high accuracy required on the asymmetry, the
G experiment was based on a custom experimental setup with its own
associated electronics and data acquisition (DAQ) system. Highly specialized
time-encoding electronics provided time-of-flight spectra for each detector for
each helicity state. More conventional electronics was used for monitoring
(mainly FastBus). The time-encoding electronics and the DAQ system have been
designed to handle events at a mean rate of 2 MHz per detector with low
deadtime and to minimize helicity-correlated systematic errors. In this paper,
we outline the general architecture and the main features of the electronics
and the DAQ system dedicated to G forward-angle measurements.Comment: 35 pages. 17 figures. This article is to be submitted to NIM section
A. It has been written with Latex using \documentclass{elsart}. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment In Press (2007
Systematic studies of binding energy dependence of neutron - proton momentum correlation function
Hanbury Brown-Twiss (HBT) results of the neutron-proton correlation function
have been systematically investigated for a series nuclear reactions with light
projectiles with help of Isospin-Dependent Quantum Molecular Dynamics model.
The relationship between the binding energy per nucleon of the projectiles and
the strength of the neutron-proton HBT at small relative momentum has been
obtained. Results show that neutron-proton HBT results are sensitive to the
binding energy per nucleon.Comment: 10 pages, 5 figures; accepted by Journal of Physics G: Nuclear and
Particle Physic
One-neutron removal reactions on light neutron-rich nuclei
A study of high energy (43--68 MeV/nucleon) one-neutron removal reactions on
a range of neutron-rich psd-shell nuclei (Z = 5--9, A = 12--25) has been
undertaken. The inclusive longitudinal and transverse momentum distributions
for the core fragments, together with the cross sections have been measured for
breakup on a carbon target. Momentum distributions for reactions on tantalum
were also measured for a subset of nuclei. An extended version of the Glauber
model incorporating second order noneikonal corrections to the JLM
parametrisation of the optical potential has been used to describe the nuclear
breakup, whilst the Coulomb dissociation is treated within first order
perturbation theory. The projectile structure has been taken into account via
shell model calculations employing the psd-interaction of Warburton and Brown.
Both the longitudinal and transverse momentum distributions, together with the
integrated cross sections were well reproduced by these calculations and
spin-parity assignments are thus proposed for B, C, N,
O, F. In addition to the large spectroscopic amplitudes for
the s intruder configuration in the N=9 isotones,B and
C, significant s admixtures appear to occur in the
ground state of the neighbouring N=10 nuclei B and C. Similarly,
crossing the N=14 subshell, the occupation of the s orbital is
observed for O, F. Analysis of the longitudinal and transverse
momentum distributions reveals that both carry spectroscopic information, often
of a complementary nature. The general utility of high energy nucleon removal
reactions as a spectroscopic tool is also examined.Comment: 50 pages, 19 figures, submitted to Phys. Rev.
One-neutron removal reactions on neutron-rich psd-shell nuclei
A systematic study of high energy, one-neutron removal reactions on 23
neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The
longitudinal momentum distributions of the core fragments and corresponding
single-neutron removal cross sections are reported for reactions on a carbon
target. Extended Glauber model calculations, weighted by the spectroscopic
factors obtained from shell model calculations, are compared to the
experimental results. Conclusions are drawn regarding the use of such reactions
as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C,
19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C
is discussed.Comment: 11 pages + 2 figure
Carbon Isotopes Near Drip Lines in the Relativistic Mean-Field Theory
We have investigated the ground-state properties of carbon isotopes in the
framework of the relativistic mean-field (RMF) theory. RMF calculations have
been performed with the non-linear scalar self-coupling of the meson
using an axially symmetric deformed configuration. We have also introduced the
vector self-coupling of the meson for the deformed mean-field
calculations. The results show that the RMF predictions on radii and
deformations are in good agreement with the available experimental data. It is
shown that several carbon isotopes possess a highly deformed shape akin to a
superdeformation. The single-particle structure of nuclei away from the
stability line has been discussed with a view to understand the properties near
the neutron drip line. Predictions of properties of carbon isotopes away from
the stability line are made.Comment: Revtex, 29 pages, 11 postscript figures include
The Quasielastic 3He(e,e'p)d Reaction at Q^2 = 1.5 GeV^2 for Recoil Momenta up to 1 GeV/c
We have studied the quasielastic 3He(e,e'p)d reaction in perpendicular
coplanar kinematics, with the energy and momentum transferred by the electron
fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,e'p)d cross section
was measured for missing momenta up to 1000 MeV/c, while the A_TL asymmetry was
extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150
MeV/c, the measured cross section is described well by calculations that use a
variational ground-state wave function of the 3He nucleus derived from a
potential that includes three-body forces. For missing momenta from 150 to 750
MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c,
the experimental cross section is more than an order of magnitude larger than
predicted by available theories. The A_TL asymmetry displays characteristic
features of broken factorization, and is described reasonably well by available
models.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, v3: changed
conten
- …