6 research outputs found

    An (Eco)Toxicity Life Cycle Impact Assessment Framework for Per- And Polyfluoroalkyl Substances

    Get PDF
    A framework for characterizing per- and polyfluoroalkyl substances (PFASs) in life cycle impact assessment (LCIA) is proposed. Thousands of PFASs are used worldwide, with special properties imparted by the fluorinated alkyl chain. Our framework makes it possible to characterize a large part of the family of PFASs by introducing transformation fractions that translate emissions of primary emitted PFASs into the highly persistent terminal degradation products: the perfluoroalkyl acids (PFAAs). Using a PFAA-adapted characterization model, human toxicity as well as marine and freshwater aquatic ecotoxicity characterization factors are calculated for three PFAAs, namely perfluorooctanoic acid (PFOA) perfluorohexanoic acid (PFHxA) and perfluorobutanesulfonic acid (PFBS). The model is evaluated to adequately capture long-term fate, where PFAAs are predicted to accumulate in open oceans. The characterization factors of the three PFAAs are ranked among the top 5% for marine ecotoxicity, when compared to 3104 chemicals in the existing USEtox results databases. Uncertainty analysis indicates potential for equally high ranks for human health impacts. Data availability constitutes an important limitation creating uncertainties. Even so, a life cycle assessment (LCA) case study illustrates practical application of our proposed framework, demonstrating that even low emissions of PFASs can have large effects on LCA results

    An Outdoor Aging Study to Investigate the Release of Per- And Polyfluoroalkyl Substances (PFAS) from Functional Textiles

    Get PDF
    The emission of per- and polyfluoroalkyl substances (PFAS) from functional textiles was investigated via an outdoor weathering experiment in Sydney, Australia. Polyamide (PA) textile fabrics treated with different water-repellent, side-chain fluorinated polymers (SFPs) were exposed on a rooftop to multiple natural stressors, including direct sunlight, precipitation, wind, and heat for 6-months. After weathering, additional stress was applied to the fabrics through abrasion and washing. Textile characterization using a multiplatform analytical approach revealed loss of both PFAS-containing textile fragments (e.g., microfibers) as well as formation and loss of low molecular weight PFAS, both of which occurred throughout weathering. These changes were accompanied by a loss of color and water repellency of the textile. The potential formation of perfluoroalkyl acids (PFAAs) from mobile residuals was quantified by oxidative conversion of extracts from unweathered textiles. Each SFP-textile finish emitted a distinct PFAA pattern following weathering, and in some cases the concentrations exceeded regulatory limits for textiles. In addition to transformation of residual low molecular weight PFAA-precursors, release of polymeric PFAS from degradation and loss of textile fibers/particles contributed to overall PFAS emissions during weathering

    Indoor emissions and fate of flame retardants : A modelling approach

    No full text
    A significant number of consumer goods and building materials act as emission sources of flame retardants (FRs) in the indoor environment. As a result, FRs have become ubiquitous indoors raising concerns about human exposure and possible health implications. Once released indoors, FRs can escape to the outdoors where they can persist, be transported over long distances and present a threat to the environment. Despite the increasing number of studies reporting the occurrence of FRs in the indoor environment, the understanding of i) how and to what extent these chemicals are released from indoor sources, and ii) their subsequent fate indoors remains limited. The overarching objective of this thesis was to improve this understanding by assessing the indoor emissions and fate of FRs using a combination of multimedia modelling strategies and experimental/empirical approaches. Paper I identifies a number of knowledge gaps and limitations regarding indoor emissions and fate of FRs and the available modelling approaches. These include a limited understanding of the key emission mechanisms for low volatility FRs, uncertainties regarding indoor air/surface partitioning, poor characterization of dust and film dynamics and a significant lack of knowledge regarding indoor reaction/degradation processes. In Paper II we highlighted the serious scarcity in physicochemical property data for the alternative FRs and demonstrated the applicability of a simple QSPR technique for selecting reliable property estimates for chemical assessments. A modelling fate assessment indicated a strong partitioning to indoor surfaces and dust for most of the alternative FRs. Indications for POP (persistent organic pollutant)-like persistence and LRT (long-range transport) and bioaccumulative potential in the outdoor environment were also identified for many alternative FRs. Using an inverse modelling approach in Paper III we estimated 2 to 3 orders of magnitude higher emissions of organophosphate FRs (0.52 and 0.32 ng.h-1) than brominated FRs (0.083 μg.h-1 and 0.41 μg.h-1) in Norwegian households. An emission-to-dust signal was also identified for organophosphate FRs suggesting that direct migration to dust may be a key fate process indoors. No evidence of a direct source-to-dust transfer mechanism was seen in Paper IV where the chemical transfer between a product treated with an organophosphate FR and dust in direct contact was experimentally investigated. It was concluded though that direct contact between an FR source and dust can result in contamination hotspots indoors.At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p

    Mass transfer of an organophosphate flame retardant between product source and dust in direct contact

    No full text
    Organophosphate flame retardants (OPFRs) are a group of semi-volatile organic compounds (SVOCs) and among the most abundant contaminants indoors. Their indoor presence has been associated with potential health risks however there is limited understanding as to how they are released from indoor sources. This study uses an emission micro-chamber to explore one of the currently understudied chemical migration pathways; direct transfer between a source material and settled dust in contact with the source. A tris(2-chloroisopropyl) phosphate (TCIPP)-treated insulation board is used as the source material. Rapid and substantial transfer was observed after only 8 h of source-dust contact, resulting in 80 times higher concentrations in dust compared to pre-experiment levels. Further time points at 24 h and 7 d showed similarly high average dust levels and the TCIPP in the dust and air in the chamber was calculated to be close to thermodynamic equilibrium. It was concluded that TCIPP was effectively transferred from the insulation board to the dust on its surface and the surrounding air via gas-phase diffusion. In a real room, a gradient of TCIPP concentrations in air above the surface of a product could result in higher concentrations in dust sitting on the product than dust in the rest of the room

    Combined use of total fluorine and oxidative fingerprinting for quantitative determination of side-chain fluorinated polymers in textiles

    No full text
    Given their extensive production volumes and potential to form persistent perfluoroalkyl acids (PFAAs), there is concern surrounding the ongoing use of side-chain fluorinated polymers (SFPs) in consumer products. Targeted SFP quantification relies on matrix assisted laser desorption ionization-time-of-flight mass spectrometry, which suffers from poor accuracy and high detection limits. Alternatively, total fluorine (TF)-based methods can be used, but these approaches report concentrations on a “fluorine equivalent” basis (e.g. F/m2 in the case of textiles) and are incapable of elucidating structure/chain length, which is critical for predicting the identity and quantity of degradation products. Here a new method for comprehensive characterization of SFPs is presented, which makes use of the total oxidizable precursors assay for fingerprint-based structural elucidation, and combustion ion chromatography for TF quantification. When used in parallel, quantitative determination of SFPs (in units of mass of CnF2n+1/m2 textile) is achieved. Expressing SFP concentrations in terms of mass of side-chain (as opposed to fluorine equivalents) facilitates estimation of both the structure and quantity of PFAA degradation products. As a proof-of-principle, the method was applied to six unknown SFP-coated medical textiles from Sweden. Four products contained C6-fluorotelomer-based SFPs (concentration range 36-188 mg C6F13/m2), one contained a C4-sulfonamide-based SFP (718 mg C4F9/m2), and one contained a C8-fluorotelomer-based SFP (249 mg C8F17/m2)
    corecore