162 research outputs found

    On two conjectures about the proper connection number of graphs

    Full text link
    A path in an edge-colored graph is called proper if no two consecutive edges of the path receive the same color. For a connected graph GG, the proper connection number pc(G)pc(G) of GG is defined as the minimum number of colors needed to color its edges so that every pair of distinct vertices of GG are connected by at least one proper path in GG. In this paper, we consider two conjectures on the proper connection number of graphs. The first conjecture states that if GG is a noncomplete graph with connectivity Îș(G)=2\kappa(G) = 2 and minimum degree ÎŽ(G)≄3\delta(G)\ge 3, then pc(G)=2pc(G) = 2, posed by Borozan et al.~in [Discrete Math. 312(2012), 2550-2560]. We give a family of counterexamples to disprove this conjecture. However, from a result of Thomassen it follows that 3-edge-connected noncomplete graphs have proper connection number 2. Using this result, we can prove that if GG is a 2-connected noncomplete graph with diam(G)=3diam(G)=3, then pc(G)=2pc(G) = 2, which solves the second conjecture we want to mention, posed by Li and Magnant in [Theory \& Appl. Graphs 0(1)(2015), Art.2].Comment: 10 pages. arXiv admin note: text overlap with arXiv:1601.0416

    Mechanism-based site-directed mutagenesis to shift the optimum pH of the phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1

    Get PDF
    AbstractPhenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1 stereoselectively catalyzes the conversion of the l-phenylalanine into trans-cinnamic acid and ammonia, and was used in chiral resolution of dl-phenylalanine to produce the d-phenylalanine under acidic condition. However, the optimum pH of RgPAL is 9 and the RgPAL exhibits low catalytic efficiency at acidic side. Therefore, a mutant RgPAL with a lower optimum pH is expected. Based on catalytic mechanism and structure analysis, we constructed a mutant RgPAL-Q137E by site-directed mutagenesis, and found that this mutant had an extended optimum pH 7–9 with activity of 1.8-fold higher than that of the wild type at pH 7. As revealed by Friedel–Crafts-type mechanism of RgPAL, the improvement of the RgPAL-Q137E might be due to the negative charge of Glu137 which could stabilize the intermediate transition states through electrostatic interaction. The RgPAL-Q137E mutant was used to resolve the racemic dl-phenylalanine, and the conversion rate and the eeD value of d-phenylalanine using RgPAL-Q137E at pH 7 were increased by 29% and 48%, and achieved 93% and 86%, respectively. This work provides an effective strategy to shift the optimum pH which is favorable to further applications of RgPAL

    Classification Based on Pruning and Double Covered Rule Sets for the Internet of Things Applications

    Get PDF
    The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy

    Construction of a subunit-fusion nitrile hydratase and discovery of an innovative metal ion transfer pattern

    Get PDF
    Metallochaperones are metal-binding proteins designed to deliver the appropriate metal to a target protein. The metal is usually transferred between different proteins. In this study, we discovered that metal was transferred between the same subunit of a mutant nitrile hydratase (NHase). Various “activator proteins” mediate the trafficking of metal ions into NHases. We constructed fusion NHases by fusing the ÎČ- and α-subunits and/or the “activator proteins” of the NHase from Pseudomonas putida. The fusion NHases exhibited higher thermostability and tolerance to high concentrations of the product amide. The mechanism of the cobalt incorporation changed from a self-subunit swapping pattern to an apoprotein-specific molecular chaperone pattern in vivo and a metallochaperone pattern in vitro. Notably, the cobalt transfer occurred between the same α-subunit in the metallochaperone pattern. These results not only demonstrated the superiority of fusion-type NHases, but also revealed an innovative metal ion transfer pattern in metalloprotein biosynthesis

    Potent anti-tumor effects of a dual specific oncolytic adenovirus expressing apoptin in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncolytic virotherapy is an attractive drug platform of cancer gene therapy, but efficacy and specificity are important prerequisites for success of such strategies. Previous studies determined that Apoptin is a p53 independent, bcl-2 insensitive apoptotic protein with the ability to specifically induce apoptosis in tumor cells. Here, we generated a conditional replication-competent adenovirus (CRCA), designated Ad-hTERT-E1a-Apoptin, and investigated the effectiveness of the CRCA a gene therapy agent for further clinical trials.</p> <p>Results</p> <p>The observation that infection with Ad-hTERT-E1a-Apoptin significantly inhibited growth of the melanoma cells, protecting normal human epidermal melanocytes from growth inhibition confirmed cancer cell selective adenoviral replication, growth inhibition, and apoptosis induction of this therapeutic approach. The <it>in vivo </it>assays performed by using C57BL/6 mice containing established primary or metastatic tumors expanded the <it>in vitro </it>studies. When treated with Ad-hTERT-E1a-Apoptin, the subcutaneous primary tumor volume reduction was not only observed in intratumoral injection group but in systemic delivery mice. In the lung metastasis model, Ad-hTERT-E1a-Apoptin effectively suppressed pulmonary metastatic lesions. Furthermore, treatment of primary and metastatic models with Ad-hTERT-E1a-Apoptin increased mice survival.</p> <p>Conclusions</p> <p>These data further reinforce the previously research showing that an adenovirus expressing Apoptin is more effective and advocate the potential applications of Ad-hTERT-E1a-Apoptin in the treatment of neoplastic diseases in future clinical trials.</p
    • 

    corecore