344 research outputs found

    Data Dropout: Optimizing Training Data for Convolutional Neural Networks

    Full text link
    Deep learning models learn to fit training data while they are highly expected to generalize well to testing data. Most works aim at finding such models by creatively designing architectures and fine-tuning parameters. To adapt to particular tasks, hand-crafted information such as image prior has also been incorporated into end-to-end learning. However, very little progress has been made on investigating how an individual training sample will influence the generalization ability of a model. In other words, to achieve high generalization accuracy, do we really need all the samples in a training dataset? In this paper, we demonstrate that deep learning models such as convolutional neural networks may not favor all training samples, and generalization accuracy can be further improved by dropping those unfavorable samples. Specifically, the influence of removing a training sample is quantifiable, and we propose a Two-Round Training approach, aiming to achieve higher generalization accuracy. We locate unfavorable samples after the first round of training, and then retrain the model from scratch with the reduced training dataset in the second round. Since our approach is essentially different from fine-tuning or further training, the computational cost should not be a concern. Our extensive experimental results indicate that, with identical settings, the proposed approach can boost performance of the well-known networks on both high-level computer vision problems such as image classification, and low-level vision problems such as image denoising

    Urban air quality: What is the optimal place to reduce transport emissions?

    Get PDF
    We develop a linear model based on a complex network approach that predicts the effect of emission changes on air pollution exposure in urban street networks including NO–NO2–O3-chemisty. The operational air quality model SIRANE is used to create a weighted adjacency matrix A describing the relation between emissions of a passive scalar inside streets and the resulting concentrations in the street network. A case study in South Kensington (London) is used, and the ad- jacency matrix A0 is determined for one wind speed and eight different wind directions. The physics of the underlying problem is used to infer A for different wind speeds. Good agreement between SIRANE predictions and the model is observed for all but the lowest wind speed, despite non-linearities in SIRANE’s model formulation. An indicator for exposure in the street is developed, and it is shown that the out-degree of the exposure matrix E represents the effect of a change in emissions on the exposure reduction in all streets in the network. The approach is then extended to NO–NO2–O3-chemisty, which introduces a non-linearity. It is shown that a linearised model agrees well with the fully nonlinear SIRANE predictions. The model shows that roads with large height-to-width ratios are the first in which emissions should be reduced in order to maximise exposure reduction
    • …
    corecore