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Abstract 10 

We develop a linear model based on a complex network approach that predicts the effect of emission 11 

changes on air pollution exposure in urban street networks including NO-NO2-O3-chemisty. The 12 

operational air quality model SIRANE is used to create a weighted adjacency matrix 𝐴 describing the 13 

relation between emissions of a passive scalar inside streets and the resulting concentrations in the 14 

street network. A case study in South Kensington (London) is used, and the adjacency matrix 𝐴0 is 15 

determined one wind speed and eight different wind directions. The physics of the underlying problem 16 

is used to infer 𝐴 for different wind speeds. Good agreement between SIRANE predictions and the 17 

model is observed for all but the lowest wind speed, despite non-linearities in SIRANE’s model 18 

formulation. An indicator for exposure in the street is developed, and it is shown that the out-degree 19 

of the exposure matrix 𝐸 represents the effect of a change in emissions on the exposure reduction in 20 

all streets in the network. The approach is then extended to NO-NO2-O3-chemisty, which introduces a 21 

non-linearity. It is shown that a linearised model agrees well with the fully nonlinear SIRANE 22 

predictions. The model shows that roads with large height-to-width ratios are the first in which 23 

emissions should be reduced in order to maximise exposure reduction.   24 
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1. Introduction 25 

Almost all the global population (99%) is exposed to pollution levels that exceeds WHO limits, with 26 

middle- and low-income countries hit hardest (WHO, 2021). With the progressive shift of people from 27 

rural to urban areas, city administrations are urged to develop effective air quality plans to meet air 28 

quality standards and protect citizens’ health. These plans mainly concern the control of vehicular 29 

traffic which is the most important source driving exceedances of air quality standards across city 30 

centres (EEA, 2022). For traffic control policies (Lu et al., 2021; Wu et al., 2017) to be effective, it is 31 

essential to quantify the contribution of local traffic emissions to the pollution levels of the urban area 32 

in order to optimally identify the places to impose restrictions. Methods for quantifying source-33 

receptor relationship are known as source apportionment techniques (Wagstrom et al., 2008; Koo et 34 

al., 2009; Clappier et al., 2017) and the most common are based on simulations using air quality 35 

models. 36 

Modelling air pollution in urban areas is far from trivial as flow and dispersion dynamics are strongly 37 

influenced by the presence of buildings, their geometric properties, and the orientation of the streets. 38 

Moreover, polluting emissions and exposure targets (i.e. citizens) are characterized by temporal and 39 

spatial patterns that make the analysis more complex. Further modelling issues are encountered when 40 

dealing with reactive pollutants. This is the case of nitrogen oxides (NO2, NO) which are formed in 41 

combustion processes (mainly from vehicular traffic) and undergo a series of photochemical reactions 42 

with the secondary formation of ozone. Acute exposure to these pollutants causes respiratory 43 

diseases and paediatric asthma (Khreis et al., 2017; Anenberg et al., 2022). Since the reaction times of 44 

NO2-NO-O3 chemistry are comparable to their residence times in the streets (that is governed by 45 

turbulent transport) these transformations must be taken into account to predict air pollution at the 46 

district and street scales (Derwent & Middleton, 1996; Mchugh et al., 1997; Soulhac et al., 2011) and 47 

its impact on citizen’s health.  48 

Computational fluid dynamic (CFD) simulations can be effectively used to model flow, dispersion, and 49 

chemical reactions (Baker et al., 2004; Bright et al., 2013; Grylls et al., 2019; Zhang et al., 2020) in 50 

complex geometries. However, they are computationally expensive and require a large amount of 51 

detailed input data. The adoption of simplified modelling techniques is the most efficient option when 52 

dealing with urban areas consisting of hundreds of streets and when the goal is to explore multiple 53 

emission and exposure scenarios.  54 

To this aim, street network models have been developed in the last decades (Berkowicz, 2000; Kim et 55 

al., 2018; McHugh et al., 1997; Soulhac et al., 2011). These are operational tools for air quality 56 

modelling based on the description of the urban fabric as a network of streets of homogeneous 57 

pollutant concentration. Each street is characterized by a polluting source and by the average 58 

geometric properties of the buildings. In this way, the complex urban pattern of buildings is 59 

represented by a simplified and regular domain of links (the streets) and nodes (street intersections). 60 

The wind flow and the turbulence in streets and street intersections are modelled by parametric 61 

relations on the network, while the concentration in the streets is estimated by a mass flow balance. 62 

Street network models have proven to be efficient for rapid prediction of air quality over large urban 63 

domains (Kakosimos et al., 2010; Soulhac et al., 2011). 64 

Fellini et al., 2019 developed a propagation model on networks to simulate pollutant dispersion from 65 

a point source using the same geometrical description as street network models. They used tools and 66 

metrics from complex network theory (Fellini et al., 2020, 2021) to unveil the physical mechanisms 67 

that drive dispersion processes and to detect vulnerable locations where a toxic gaseous release can 68 
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cause the greatest impact. In this paper, a similar methodology is used to predict the optimal location 69 

to reduce traffic emissions. 70 

The theory of complex networks aims to describe a system as a network of interactions between its 71 

elements. These elements are represented by nodes, interconnected by links whenever a relationship 72 

is observed between the corresponding elements. The resulting network can then be described by 73 

means of multiple metrics or used as a basis for modelling. This theory has been successfully adopted 74 

in the field of urban science to investigate the topological properties of cities but also mobility patterns 75 

of citizens and socio-economic dynamics (Batty, 2013; Barthelemy, 2016). Recently, the complex 76 

network approach has proved useful in the study of geophysical flows, for example to analyse the 77 

motion of particles in turbulent flows (Iacobello et al., 2019; Ser-Giacomi et al., 2019). 78 

Given the complexity of transport and transformation processes of pollutants in the urban 79 

atmosphere and the multiplicity of meteorological, emission and exposure scenarios, we propose in 80 

this work a network approach to model the relation between pollutant emissions and their impact on 81 

citizens and to perform source apportionment analyses. The aim is to answer the question: if a 82 

borough would like to reduce emissions in a neighborhood by a certain percentage, on which streets 83 

should action be taken in order to maximise the reduction in citizen’s exposure? It will be 84 

demonstrated that due to the representation of emissions, air quality and exposure in the form of a 85 

complex network, multiple emissions and exposure scenarios can be easily simulated and the 86 

fundamental elements of the phenomenon are clearly identified. 87 

The work is organized as follows: in section 2 the construction of the network is outlined together with 88 

the fundamental concepts of the model. Section 3 presents the case study to which the methodology 89 

is applied. Section 4 shows the potential of the model when dealing with a passive pollutant. In section 90 

5, the method is extended to study exposure to reactive pollutants. Finally, in section 6, the 91 

conclusions and perspectives of the work are presented. 92 

2. Methodology 93 

2.1 Complex network representation 94 

A weighted and directed network (Boccaletti et al., 2006) is adopted to model the correlation between 95 

pollutant emissions and concentration in the streets. In classical street network models, the network 96 

mimics the geometry of the urban fabric, with streets represented as links connecting two nodes that 97 

correspond to street intersections (Figure 1.a). Conversely, nodes represent here the streets while the 98 

directed links are the emission-impact relation between streets. Therefore, distant streets can also be 99 

connected (Figure 1.c) differently from the physical network of streets that is limited by the urban 100 

shape. The structure of the network is mathematically described by the adjacency matrix whose 101 

elements have a value equal to 1 or 0 depending on whether the pairs of nodes are connected or not 102 

in the graph. In addition to this information, the weight matrix 𝐴 expresses for each non-zero value 103 

the weight (i.e. the importance) associated with the connection (Figure 1.d). The link weights 104 

therefore contain all the information relating to the transport of pollutants from one street to another.  105 
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 106 

Figure 1: Schematic representation of pollutant dispersion in a dense city (a), the classical street-network domain (b), the 107 
emission-concentration network considered in this work (c) and the corresponding weight matrix (d). The non-zero elements 108 
in the blue column collect the concentration values in the contaminated streets from node j. 109 

The main assumption underlying this work is that to first order, the transport within and between the 110 

streets can be represented as: 111 

 𝑪 = 𝐴𝑸 (1) 

where 𝑸 and 𝑪 are the emission and concentration in each street respectively, and 𝐴𝑖𝑗  is an entry of 112 

the weight matrix that represents how emissions in street 𝑗  result in concentrations in street 𝑖 . 113 

Denoting the number of streets by 𝑁, 𝐴 is of size 𝑁 × 𝑁. Eq. (1) assumes that there is a linear relation 114 

between emissions and concentration, which is a hypothesis that will be tested later in the paper. 115 

Chemistry will create a nonlinear relation between 𝑸 and 𝑪. This issue will be dealt with in Section 5. 116 

We note that Eq. (1) is equivalent to a source apportionment method as each row of 𝐴 represents the 117 

linear weights of the sources contributing to the concentration in a street of the network. 118 

2.2 Construction of the weight matrix A 119 

The weight matrix 𝐴 in Eq. (1) is constructed using the model SIRANE. SIRANE is an operational street 120 

network model for urban dispersion that has been adopted in several European cities and has been 121 

validated against both wind tunnel experiments and field campaigns (Carpentieri et al., 2012; Soulhac 122 

et al., 2003, 2012, 2017). The model is based on a simplified description of the urban geometry and 123 

adopts parametric relations to simulate the transport mechanisms of pollutants within the urban 124 

canopy. The streets of a city district are modelled as a network of boxes within which the pollutant is 125 

assumed to be uniformly mixed. The model simulates three main transport mechanisms: advection 126 

along the street axis (𝑄𝑎𝑑𝑣), turbulent vertical exchange at the interface between the street and the 127 

overlying atmosphere (𝑄𝐻,𝑡𝑢𝑟𝑏), and exchange at street intersections (𝑄𝐼). The main physico-chemical 128 

processes are also modelled. These are the null-cycle chemistry and wet (𝑄𝑤𝑎𝑠ℎ) and dry deposition 129 

(𝑄𝑝𝑎𝑟𝑡). The mass balance over each street volume for a passive scalar can be written as: 130 

𝑄 + 𝑄𝐼 = 𝑄𝐻,𝑡𝑢𝑟𝑏 + 𝑄𝑎𝑑𝑣 + 𝑄𝑝𝑎𝑟𝑡 + 𝑄𝑤𝑎𝑠ℎ . 

 

(2) 

Above roofs, a Gaussian plume model is used. The interaction between the dispersion above roof and 131 

inside the street is mainly taken into account in the term 𝑄𝐻,𝑡𝑢𝑟𝑏. SIRANE requires as input data the 132 

urban geometry, the meteorological conditions of the site, the background concentration of pollutants 133 

and the emissions within the streets. A meteorological pre-processor utilises parametrisations to 134 

simulate the boundary layer above roofs from the assigned conditions (Soulhac et al., 2011). 135 

To construct the weight matrix 𝐴, we perform simulations with SIRANE on the urban district that will 136 

be presented in Section 3. We assume that the background concentration is zero and that the only 137 

polluting source in the streets is the release of a gas behaving like a passive scalar. This is achieved 138 

using an ozone (𝑂3) emission in SIRANE, which, without the presence of any 𝑁𝑂 and 𝑁𝑂2, is an inert 139 
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tracer in the model. We perform the simulations at a single wind speed 𝑈 and one wind direction 𝜙 140 

at a time. Under these assumptions, the j-th column of the weight matrix (Figure 1.c-d) is filled by 141 

simulating a unit ozone emission in the j-th street of the network. The resulting concentration values 142 

in street network provides column 𝑗 of matrix 𝐴. By repeating this operation for all the streets of the 143 

network, 𝐴  is obtained. This procedure is then repeated for 8 wind directions, and 𝐴  therefore 144 

depends on the intensity and direction of the wind above roofs, i.e. 𝐴 = 𝐴(𝑈, 𝜙). In practice, A is 145 

determined for one wind speed only, which we will refer to as the reference velocity 𝑈0 and associated 146 

weight matrix 𝐴0. The physics of the problem can be used to infer 𝐴 at other wind speeds (see section 147 

4.2). 148 

2.3 Exposure 149 

To find the best place to reduce emissions in the urban district, a metric is required that quantifies the 150 

exposure of citizens. Personal exposure depends sensitively on the type of pollutant, inhalation rate 151 

and duration of the exposure. Here, we adopt a simple measure for the exposure in a street 𝑒𝑖 [g/hr] 152 

as: 153 

𝑒𝑖 = 𝑝𝑖𝐶𝑖𝑞  , (3) 
 154 

where 𝑝𝑖  is the number of people living in street 𝑖 (note that summation over repeated indices is not 155 

implied here) and 𝑞 is the inhalation rate of a person, which is taken to be 0.571 m3/hr (Epa & Factors 156 

Program, 2011). In matrix notation, this can be written as 157 

 𝒆 = 𝑞𝒑 ∘ 𝑪 = 𝑞𝒑 ∘ 𝐴𝑸 = 𝐸𝑸, (4) 
 

where ∘  is the Hadamard product and 𝐸𝑖𝑗 = 𝑞𝑝𝑖𝐴𝑖𝑗  is the exposure matrix. In this work, we will 158 

assume that the number of people 𝑝𝑖  is constant as a function of time, but note that it is 159 

straightforward to consider different, more complex, scenarios (different days of the week, different 160 

hours) by changing the 𝒑 vector only. 161 

2.4 Street population estimation  162 

To estimate the number of citizens in each street (𝑝𝑖), we assume that the street is flanked by two 163 

buildings of constant width 𝑤, of length equal to the length of the street (𝐿𝑖),  and of height equal to 164 

the average depth of the street canyon 𝐻𝑖 (panel c in Figure 2). We then assume a constant storey 165 

height 𝐻𝐹 to assess the number of floors. The total living space for a street is thus given by: 166 

 
𝑆𝑖 = 2

𝐻𝑖𝐿𝑖𝑤

𝐻𝐹
. 

(5) 

 167 

The corresponding resident population (𝑝𝑖) can be calculated as the ratio between the living space 168 

and the average area per capita 𝑆𝑝, i.e. the average living space for a resident. This latter can be 169 

evaluated for a specific district as the ratio of the total living area given by the buildings in the district 170 

∑ 2 𝐻𝑗 𝐿𝑗𝑤/𝐻𝐹𝑗  and the number of citizens 𝑛𝑇𝑂𝑇 living in the district. Assuming a constant width for 171 

the buildings, we obtain the following expression for the number of people in street 𝑖: 172 

 
𝑝𝑖 = 2

𝐻𝑖𝐿𝑖𝑤

𝐻𝐹

𝑛𝑇𝑂𝑇
2 𝑤∑ 𝐻𝑗𝐿𝑗/𝐻𝐹𝑗

=
𝐻𝑖𝐿𝑖

∑ 𝐻𝑗 𝐿𝑗𝑗
𝑛𝑇𝑂𝑇 . 

 

(6) 

3. South Kensington case study  173 

The case study (latitude 51.4998, longitude -0.1748) is located in South Kensington, a district west of 174 

central London, UK (Figure 2). The study area spans 672x1344 m2 between Hyde Park and South 175 
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Kensington station and is characterized by high population, developed transport and dense buildings. 176 

The high variety of morphological features (e.g., length of the streets, height of the buildings) and the 177 

different population density of the building blocks make this area suitable for investigating which 178 

places are most sensitive to the reduction of polluting emissions.  179 

The representation of the urban district in SIRANE is detailed in Grylls et al., 2019. The street network 180 

is composed of 46 streets that are represented as straight links with starting and ending points located 181 

at the centre of the connecting intersections. Consistent with the description of the street as a box 182 

(see Section 2.2), each street has average geometric properties associated with it. The height (𝐻) is 183 

given by the average height of the side buildings, while the street width (𝑊) is the average distance 184 

between the lateral buildings (see Figure 2). Street length (𝐿) is simply the distance between the two 185 

street intersections.  186 

The geometrical properties of the street canyons are used to estimate the resident population 187 

according to Eq. (6). The total number of citizens 𝑛𝑇𝑂𝑇 is estimated as the product of the district area 188 

and the average population density (12876 𝑝𝑒𝑜/𝑘𝑚2 ) of the reference region (Kensington and 189 

Chelsea) derived from Park (2020). 190 

To construct the matrix A for the study area, the simulations with SIRANE are performed with typical 191 

meteorological conditions: a temperate night (𝑇 = 4 °C) in neutral stability conditions with cloud 192 

cover (5 Oktas) and no precipitation. The night condition is adopted to simulate the dispersion of 193 

ozone as a passive scalar (see Section 2.2). Starting from these assigned conditions, SIRANE uses 194 

parametrizations to estimate the characteristic properties of the boundary layer as well as the reaction 195 

rates for reactive pollutants (see Section 5).  196 

Vehicular emissions in the streets are estimated through the coupling of a VISSIM traffic 197 

microsimulation (Bloomberg & Dale, 2000) and the emission model developed by Int Panis et al. 198 

(2006). The resulting second-by-second NOX emissions are time averaged over 1 hour and spatially 199 

averaged over the street boxes. Details are provided in Grylls et al. (2019). 200 

For the passive scalar analysis, the background concentration was taken equal to zero (see also Section 201 

2.1). For the reactive scalar analysis, realistic background concentrations were used. These were 202 

obtained as the average value in the 2021 for the reference region (Kensington and Chelsea): NO2 =203 

34.26 𝜇𝑔/𝑚3, NO = 17.09 𝜇𝑔/𝑚3  (UK Ambient Air Quality Interactive Map), O3 = 27.31𝜇𝑔/𝑚
3 204 

(Greater London Authority). It is worth noting that the ozone estimate is an eight-hour average. To 205 

simulate photochemical reactions, a sunny day (T=14 °C) at noon was considered in this case. 206 
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 207 

Figure 2: a) Location of South Kensington district in Central London. b) The study area and its street network. c) 208 
Schematization of lateral buildings for the estimation of the population. d) Depth (H) and width (WS) of the street canyons 209 

and estimated population in the streets (P). 210 

4. Passive scalar transport 211 

4.1 Concentration reconstruction  212 

Following the method explained in Section 2.2, we construct the weight matrix 𝐴  for the South 213 

Kensington district for eight different wind directions, assuming a constant wind speed 𝑈0=5 m/s. In 214 

order to verify whether the resulting matrix is correct, we then perform a simulation in SIRANE with 215 

random emissions in multiple streets simultaneously (i.e. a random 𝑸 vector) and we compare the 216 

results with the concentration in the streets estimated using the linear model presented in Eq. (1). 217 

This comparative test is repeated 20 times and the results are reported in Figure 3(a), where each 218 

point represents the concentration in a single street for a specific wind direction and for an initial 219 

random distribution of emissions. The results show an excellent match between the two models and 220 

suggest that the linear assumption holds in the case of passive pollutants emitted in a rainless day (i.e. 221 

neglecting chemical reactions and dry and wet deposition) and with negligible re-entrainment of 222 

pollutants dispersed above roof levels. In fact, in this case the balance in Eq. (2) can be rewritten as:  223 

𝑄 + 𝑄𝐼 = 𝑄𝐻,𝑡𝑢𝑟𝑏 + 𝑄𝑎𝑑𝑣 → 𝑄 + 𝑈𝑆𝑊𝐻𝐶𝑢𝑝 = 𝑢𝑑𝑊𝐿𝐶 + 𝑈𝑆𝑊𝐻𝐶, 

 

(7) 

where 𝑈𝑆 and 𝑢𝑑 are the advective velocity along the street canyon and the rate of vertical turbulent 224 

transfer at roof level, 𝐶 and 𝐶𝑢𝑝 are the average concentration in the street and in the airflow entering 225 

the street from the upwind intersection. The latter is in turn given by a linear superposition of the 226 
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emissions in the upwind streets. These considerations evidence that the balance in Eq. (7) can be 227 

formulated as Eq. (1) and validate the very good correlation in Figure 3(a).  228 

 229 

4.2 Wind speed correction 230 

As highlighted by Eq. (7), the wind intensity affects the pollutant balance in the street by means of the 231 

two characteristic velocities 𝑈𝑆 and 𝑢𝑑. Both these velocities can be parameterized as linear functions 232 

of the friction velocity (𝑢∗) of the overlying boundary layer (Salizzoni et al., 2009 and Soulhac et al., 233 

2010). Furthermore, assuming that the weather conditions are constant over the area of interest, the 234 

ratio between 𝑢∗ and the free stream velocity (𝑈 ) of the boundary layer is constant. These 235 

considerations suggest that matrix 𝐴  in Eq. (1) is inversely proportional to the wind intensity 𝑈 . 236 

Therefore, we can generalise the weight matrix 𝐴 for a general wind speed as: 237 

 
𝐴(𝑈, 𝜙) =

𝑈0
𝑈
𝐴0(𝑈0, 𝜙) 

(8) 
 

where 𝑈0 is the reference velocity (5 m/s in this study) and 𝐴0 is the corresponding weight matrix.  238 

This scaling is adopted to simulate scenarios with ten different wind intensities, by using Eqs. (1) and 239 

(8). As for the reference case, random emissions 𝑸 are prescribed in the streets. The concentration 240 

predictions of Eq. (8) are compared in Figure 3(b) with the outcomes of the simulations performed 241 

with SIRANE. For each wind intensity, we take the average over the eight wind directions (𝜙). At low 242 

wind speed, the dispersion of pollutants above roof level has a significant impact. For very low wind 243 

speeds, the pollution transport above the streets via plumes become important which do not scale as 244 

Eq. (8); this leads to inaccuracies in the proposed approximation.  245 

4.3 Diagonal dominance of A 246 

In this section we explore the diagonal dominance of matrix A, which is satisfied when 247 

|𝐴𝑖𝑖|/∑ |𝐴𝑖𝑗|𝑗≠𝑖 > 1, i.e. the matrix is diagonally dominant when, for each row, the magnitude of the 248 

diagonal element in a row is larger than or equal to the sum of the magnitudes of all the other entries in 249 

that row. If A is found to be diagonally dominant, the concentration in the streets is mainly affected 250 

by local emissions. It should be noted that |𝐴𝑖𝑖|/∑ |𝐴𝑖𝑗|𝑗≠𝑖  tends to infinity as the matrix becomes 251 

diagonal. Therefore, to obtain a useful measure for the matrix as a whole, the harmonic mean of 252 

|𝐴𝑖𝑖|/∑ |𝐴𝑖𝑗|𝑗≠𝑖  for all the rows is taken: 253 

Figure 3: a) Concentration in the streets predicted by SIRANE and by the linear model proposed in Eq. (1) for different wind 
direction and a constant wind intensity (5 m/s). b) Accuracy as a function of wind speed.  
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𝐷 = (
1

𝑁
∑

∑ |𝐴𝑖𝑗|𝑗≠𝑖

|𝐴𝑖𝑖|
𝑖

)

−1

. 
 

(9) 
 

If 𝐷 > 1 then the matrix is diagonally dominant on average. The harmonic mean weighs the smallest 254 

row values highest and will thus be a conservative estimate. By calculating 𝐷  for all eight wind 255 

directions, we find that 133 < 𝐷 < 193, and thus conclude that self-interactions are expected to be 256 

very strong. Substitution of Eq. (8) shows that 𝐷 is independent of wind velocity (provided the wind 257 

speed is not too small).  258 

 259 

4.4 Reducing network complexity 260 

The network contains a large number of links due to the transport of pollutants out of street canyons 261 

via the atmosphere and into street canyons downwind. The pollutant plume dilutes rapidly with 262 

downstream distance, resulting in a large number of very weak links. These can be removed without 263 

a noticeable impact on the concentration predictions. As demonstrated in the previous section, the 264 

matrix 𝐴 is diagonally dominant, and we can use the mean of the diagonal entries to quantify the 265 

dominant interactions. We select a geometric mean (∏ A𝑖𝑖
𝑁
1 )

1

𝑁 to avoid one street dominating the 266 

mean as the diagonal entries can vary greatly in magnitude depending on the street properties. 267 

Introducing a threshold value 𝛼, the modified weight matrix Ǎ𝑖𝑗  is determined as: 268 

Ǎ𝑖𝑗 =

{
 
 

 
 

A𝑖𝑗 , 𝑖𝑓 A𝑖𝑗 > 𝛼 (∏A𝑖𝑖

𝑁

1

)

1
𝑁

0, otherwise                     

 

 
 

(10) 

 269 

Figure 4 (blue curve) shows the trend in the number of links of matrix Ǎ𝑖𝑗 as a function of 𝛼: using a 270 

threshold value 𝛼 = 0.01 decreases the number of links by a factor 3.28. To quantify the error made 271 

due to link removal, we consider the relative error in the predicted concentration: 272 

𝜖 =
‖𝑪 − 𝑪̌‖

2

‖𝑪‖2
=
‖(𝐴 − 𝐴̌)𝑸‖

2

‖𝐴𝑸‖2
≈
‖𝐴 − 𝐴̌‖

2

‖𝐴‖2
 273 

where ‖⋅‖2 is the L2-norm, and the last step involves a change from a vector norm to a matrix norm. 274 

The red curve in Figure 4 evidence that the relative error 𝜖 is about 0.01 at 𝛼 = 0.01, and 0.05 at 𝛼 =275 

0.1. This demonstrates that the number of links can be reduced severely without significantly altering 276 

the properties of 𝐴. For large networks, using a small threshold value  𝛼 will imply substantial savings 277 

in memory and an increase in computational performance. However, since the network considered 278 

here is small, we will not make use of the simplification. 279 
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 280 

Figure 4: Number of links and error (ε) due to link removal for networks with different exclusive threshold α. 281 

4.5 Where to reduce emissions? 282 

The scenario considered here is that a borough decides to reduce its total emissions by a certain 283 

amount and would like to know in which street this should be done in order to have the largest health 284 

benefits for its citizens. To answer this question, it is necessary to quantify the contribution of the 285 

emission in each street to the air pollution in the urban area. The process of evaluating the effect of a 286 

single source on the total concentrations is called source apportionment.  287 

Following the source apportionment strategy, and in particular the tagged species approach (Wang et 288 

al., 2009; Grewe et al., 2010), we perturb the emission-exposure model introduced in Section 2 to 289 

analyse the exposure variation due to a change in the pollutant emissions as: 290 

 𝛿𝒆 = 𝐸𝛿𝑸. (11) 
 291 

The desired emission change is assumed to be 𝛿𝑄 = 𝑏𝑄 where 𝑄 =
1

𝑁
∑ 𝑄𝑖𝑖  is the average emission 292 

rate per street and 𝑏 is a parameter, which is taken to be 0.10 here. We are looking for the street 𝑗 293 

whose emission reduction −𝛿𝑄  maximizes the sum of the exposure change in all the streets. The total 294 

exposure reduction 𝑅𝑗 due to an emission reduction 𝛿𝑄𝑗 = −𝛿𝑄 in street j can be expressed by: 295 

 𝑅𝑗 = −∑𝛿𝑒𝑖
𝑖

= −∑𝛿𝑄𝑘∑𝐸𝑖𝑘
𝑖𝑘

= 𝛿𝑄∑𝐸𝑖𝑗
𝑖

 

 

(12)  

where the last step uses that 𝛿𝑸  is different from 0 only in street j. Note that ∑ 𝐸𝑖𝑗𝑖  is the outdegree 296 

of node j (𝑑𝑗
+) (Newman, 2010). So, the optimal place to reduce emissions corresponds to the node 297 

with the highest outdegree in the defined weighted network.  298 
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   299 

Figure 5: Exposure reduction achieved by decreasing the emission in the street by a constant quantity 𝛿𝑄. Panels a and b 300 
show the maximum and average values for the different wind directions. Panel c shows the average computed by 301 

neglecting self-interactions. 302 

The exposure reduction (𝑹) is shown in Figure 5.  In the analysis, we consider a single wind intensity 303 

𝑈0 = 5 m/s since we are interested in the variability of 𝑹  among the streets and not in its absolute 304 

value. In this sense, the results shown in Figure 5 are also valid for the other wind intensities, in 305 

accordance with the linear relation in Eq. (8). Panels a and b show the maximum and average 𝑹 for 306 

the different wind direction scenarios. The similarity between the two figures suggests that the results 307 

depend only weakly on the wind direction. This is likely because the main exposure reduction occurs 308 

in the same street where the emission is limited since matrix 𝐴 (and thus 𝐸) is strongly diagonally 309 

dominant, as was shown in Section 4.3. To clarify this point, we report in panel c the results obtained 310 

by neglecting self-interactions in matrix E, i.e. for each street we compute the exposure reduction that 311 

is achieved in the whole network except in the street where the emission is reduced. The value of 𝑹 312 

is considerably lower in this case, confirming the importance of self-interactions.  313 

The variability in the exposure reduction among the streets can be related to the geometry of the 314 

street canyons and their connectivity. When only self-interactions are considered (panel a and b), Eq. 315 

(12) can be evaluated exactly: 316 

 
𝑅𝑖 = 𝛿𝑄𝐸𝑖𝑖 = 𝛿𝑄 𝑞 𝑝𝑖

𝑈0
𝑈
𝐴0,𝑖𝑖 = 

𝑈0
𝑈

𝛿𝑄 𝑞 𝑝𝑖
𝑢𝑑0𝑊𝑖𝐿𝑖

=
𝑈0
𝑈

𝛿𝑄 𝑞 𝑛𝑇𝑂𝑇
𝑢𝑑0∑ 𝐻𝑗 𝐿𝑗𝑗

𝐻𝑖
𝑊𝑖
.  

(13)  

 317 

The exposure reduction will be higher the higher the 𝐸𝑖𝑖  entry. This increases with the resident 318 

population in the street ( 𝑝𝑖 ) and with the entry 𝐴𝑖𝑖  which provides the increase in pollutant 319 

concentration per unit emission. According to Eq. (6), 𝑝𝑖  is a linear function of the length of the street 320 

and the height of the buildings. Following the model reported in Eq. (7) and considering that there is 321 

no pollutant exchange at street intersections, we find that 𝐴𝑖𝑖  (here reported for a general wind 322 

intensity, i.e. 𝐴 = 𝐴0𝑈0/𝑈) decreases with W and L.  Consequently, as demonstrated in Eq. (13), the 323 

exposure reduction is expected to scale with the street aspect ratio 𝐻/𝑊, while the contribution of 324 

the street length should be negligible. This is confirmed by Figure 6, which shows a linear trend of the 325 

exposure reduction with the canyon aspect ratio for the different scenarios of wind intensity (U). The 326 

dashed lines correspond to the prediction in Eq. (13). Panels a and b of Figure 5 evidence that 𝑅𝑗 is 327 

not dependent on the street length. 328 

When self-interactions are neglected (panel c), the exposure reduction in Eq. (12) is high when 𝐸𝑖𝑗  is 329 

different from zero for many i, i.e., when the interconnectivity of the network is high. For this reason, 330 

the largest exposure reductions in panel c are obtained on the well interconnected streets of the 331 

network.  332 
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 333 

 334 

Figure 6: Exposure reduction (average over the wind directions) as a function of the aspect ratio (H/W) of the streets. 335 
Dashed lines correspond to the prediction in Eq. (13), 336 

 337 

5. Extension to photochemical smog 338 

The formalism will now be extended to include chemically reacting species, namely the NO− NO2 −339 

O3 cycle associated with photochemical smog (Oke et al., 2017). We follow SIRANE by assuming that 340 

the characteristic time scales of the chemical reactions are small compared to the residence time of 341 

pollutants within the streets. Under this assumption, a two-step method can be used to model the 342 

fate of the chemical species. First, we consider that ozone, nitric oxide and nitrogen dioxide are 343 

transported passively across the street network. After reaching the designated street, we assume that 344 

the species are in a photochemical steady state inside the canyon, and we apply chemical reactions to 345 

obtain the final concentration. 346 

 Adopting the network approach, the first step is the passive redistribution of chemical species, given 347 

by  348 

 𝑪̃𝑁𝑂2 = 𝐴𝑸𝑁𝑂2 ,     𝑪̃𝑁𝑂 = 𝐴𝑸𝑁𝑂 ,     𝑪̃𝑂3 = 𝐴𝑸𝑂3 . (14) 

 349 

Written in a single matrix multiplication, this becomes 350 

[

𝑪̃𝑁𝑂2
 𝑪̃𝑁𝑂
𝑪̃𝑂3

] = (
𝐴 0 0
0 𝐴 0
0 0 𝐴

) [

𝑸𝑁𝑂2
 𝑸𝑁𝑂
𝑸𝑂3

] , or  simply   𝑪̃ = 𝐵𝑸. 

 

 
(15) 

The second step is to apply the chemistry which can be represented by 351 

 𝑪 = 𝒇(𝑪̃), 

 

(16) 

where 𝒇 is a nonlinear function that maps 𝑪̃  to 𝑪 in each street. The null-cycle chemistry (Oke et al., 352 

2017) together with the conservation of 𝑁 and 𝑂 species in a single street results in the following 353 

equilibrium concentrations: 354 

[O3] =
−(𝑘3(𝑐𝑁 − 𝑐𝑂) + 𝑘1) + √Δ

2𝑘3
,   
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[NO2] = 𝑐𝑂 − [O3],                                        
[NO] = 𝑐𝑁 − [NO2] = 𝑐𝑁 − 𝑐𝑂 + [O3], 

 

(17) 

where 355 

 𝑐𝑁 = [NÕ] + [NÕ2] + [NO]𝑏 + [NO2]𝑏 ,  

𝑐𝑂 = [NÕ2]  + [Õ3] + [NO2]𝑏 + [O3]𝑏 , 

 Δ = (𝑘3(𝑐𝑁 − 𝑐𝑂) + 𝑘1)
2 + 4𝑘1𝑘3𝑐𝑂. 

 

 
(18) 

Here, the brackets denote molar concentrations, that are linked to the mass concentrations as 𝑋̃ =356 

𝑀𝑋[𝑋], where 𝑀𝑋 is the molar mass (g/mol) of species 𝑋. 𝑘1 is the rate (expressed in m3mol-1s-1) of 357 

NO2 regeneration from 𝑁𝑂 and 𝑂3 reaction, and 𝑘3 is the photolysis rate of 𝑁𝑂2 (expressed in s-1). 358 

Denoting 𝒄̃=[NÕ, NO2̃ ,O3̃]
𝑇

and 𝒄=[NO, NO2, O3]
𝑇 as the mass concentration vectors in a single street 359 

before and after the chemical reaction, respectively, the relation between the two can be expressed 360 

as 361 

𝒄 = 𝒇𝒔(𝒄̃) = 𝒇𝒔(𝑁𝑂̃, 𝑁𝑂2̃, 𝑂3̃), (19) 

 362 

where 𝒇𝒔  represents 𝒇 for a single street. There are a few specifics of air quality simulations that 363 

simplify the calculation of the term 𝒇𝒔. First, ozone is a secondary pollutant, which implies that it is 364 

formed from reactions with primary pollutants and thus 𝑸O3 = 𝟎, which in turn implies that 𝑂3̃ = 0 365 

(see Eq. (14)). Second, the emissions of NO and NO2 are typically prescribed in terms of an emission 366 

ratio 𝑎 =  𝑄𝑁𝑂2/𝑄𝑁𝑂𝑥 where 𝑎 is a constant and 𝑄NOx is reported on a NO2 basis (i.e. it is assumed 367 

that all NO is converted to NO2). This means that 368 

𝑸NO = (1 − 𝑎)
𝑀NO
𝑀NO2

𝑸NOx ,         𝑸NO2 = 𝑎𝑸NOx , 
(20) 

 369 

and, because of the linearity of 𝐴, that NÕ = (1 − 𝑎)
𝑀NO

𝑀NO2
NOx̃  and NO2̃ = 𝑎NOx̃ . Thus, we can write 370 

𝒄 = 𝒇𝒔(NÕ, NO2̃ ,O3̃) = 𝒈(NOx̃ ), (21) 

 371 

where 𝒈 is a function that depends on the NÕx concentration only. 372 

To verify the two-step network model introduced above, we compare it with SIRANE. We note that 373 

also the chemical model currently implemented in SIRANE derives from the same assumptions 374 

(photostationary equilibrium in the canyon and NO  and O  balance). However, differently from 375 

SIRANE, we neglect the deposition of chemical species and all the dynamics of dispersion and 376 

transformation above roof levels. These assumptions are made to maintain a clear mathematical 377 

formulation, in line with the network description. In fact, the fate of the three species is predicted 378 

simply by using Eq. (15), i.e. matrix 𝐴 from the passive scalar model, and by applying the function g 379 

for the chemical transformations. To compare the two models, we simulate random emissions of NOx 380 

in multiple streets and we compare the resulting concentrations. An emissions ratio 𝑎 = 0.2 was 381 

assigned to the emissions in both models (Carslaw et al., 2016; O’Driscoll et al., 2016; UK National 382 

Atmospheric Emission Inventory, 2018). The linear scaling (Eq. (8)) for the wind intensity was used to 383 

simulate different speed scenarios starting from a single matrix reconstruction (𝐴0 for 𝑈0 = 5 m/s). 384 

We find that even in the case of chemical species, the concentrations are predicted with great 385 

accuracy for different wind directions and intensities (Figure 7). Although it is not visible from Figure 386 
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7.a, the two-step network model gives a slightly higher prediction than SIRANE, about 2% in this data 387 

set. These slight deviations are because SIRANE takes into account the deposition of nitrogen oxides 388 

while the matrix A is constructed for a non-depositing passive scalar (see Section 2.2).  389 

 390 

Figure 7: Concentration of NO2 in the streets predicted by SIRANE and by the two-step network model introduced in Eqs. 391 
(15)-(21). The comparison is made for simulations with different a) wind directions  b) and wind speeds. 392 

5.1 Calculation of emission sensitivity 393 

The inclusion of chemistry makes the exposure (Section 2.3) a nonlinear function of the emissions 𝑸: 394 

 𝒆 = 𝑞𝒑 ∘ 𝑪 = 𝑞𝒑 ∘ 𝒇(𝑪̃) = 𝑞𝒑 ∘ 𝒇(𝐵𝑸). 

 

(22) 

Exposure variation in the streets due to a change in the pollutant emissions can be expressed as 395 

 𝛿𝒆 = 𝒑 ∘ 𝛿𝑪 =  𝒑 ∘ 𝛿𝒇(𝐵𝑸), (23) 
 

and a Taylor series expansion around the reference emissions 𝑸𝟎 results in 396 

 
𝛿𝒆 = 𝒆 − 𝒆𝟎 ≈ 𝑞𝒑 ∘

𝜕𝒇

𝜕𝑪̃
𝐵𝛿𝑸, 

(24) 

 
or simply 397 

 
𝛿𝒆 = 𝐸𝛿𝑸      where      𝐸 = 𝑞𝒑 ∘

𝜕𝒇

𝜕𝑪̃
𝐵. 

(25) 

Recalling that function 𝒇  for a single street is denoted 𝒇𝒔  for and that it can be simplified to 𝒈 398 

according to Eq. (21), the Jacobian is given by 399 

 

𝜕𝒇𝒔
𝜕𝒄̃

=

(

 
 
 
 

𝜕𝑓𝑠,1
𝜕𝑐̃1

𝜕𝑓𝑠,1
𝜕𝑐̃2

𝜕𝑓𝑠,1
𝜕𝑐̃3

𝜕𝑓𝑠,2
𝜕𝑐̃1

𝜕𝑓𝑠,2
𝜕𝑐̃2

𝜕𝑓𝑠,2
𝜕𝑐̃3

𝜕𝑓𝑠,3
𝜕𝑐̃1

𝜕𝑓𝑠,3
𝜕𝑐̃2

𝜕𝑓𝑠,3
𝜕𝑐̃3 )

 
 
 
 

=
d𝒈

dNÕx
((1 − 𝑎)

𝑀NO
𝑀NO2

𝑎 0) 

 
 
 

(26) 

 400 

Figure 8 shows the sensitivity d𝒈/dNÕx for the photochemical equilibrium. Solid lines represent the 401 

model feedback when the background concentrations of the case study are considered. Dashed lines 402 

refer to the scenario with zero background concentrations. The starting position of the three 403 

component curves depends on the background concentration, while the asymptotic value for high 404 

NOx̃  concentration depends on the emission ratio a, i.e. when the emitted and advected nitrogen 405 

a b 
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oxides (NOx̃ ) are very large, the background concentrations become negligible and the model behaves 406 

linearly (constant d𝒈/dNÕx). We observe that d𝒈/dNÕx for ozone may be negative or positive. The 407 

negative(positive) d𝒈/dNÕx occurs when the background concentration of ozone ( [O3]𝑏 ) is 408 

higher(lower) than the ozone concentration at equilibrium ([O3]). In any case, the rate of change of 409 

ozone always approaches zero as NOx increases. This is due to the consumption of available ozone by 410 

nitrogen oxides and can be derived from equations (17)-(18) showing that [𝑂3] goes to zero when NOx̃  411 

tends to infinity. Finally, we remark that for the case study considered here, the ozone consumption 412 

decreases as the concentration of NOx̃  increases, which raises the risk associated with exposure to 413 

ozone (U.S. EPA, 2020).   414 

   415 

Figure 8 : Sensitivity of NO2, NO and O3 concentration to the increase in the 𝑁𝑂̃𝑥  concentration according to Eq. (21). Zero 416 
background concentrations (dashed lines) and background concentrations of the case study (𝑁𝑂2 = 34.26 𝜇𝑔/𝑚3, 𝑁𝑂 =417 

17.09 𝜇𝑔/𝑚3, 𝑂3 = 27.31𝜇𝑔/𝑚
3, solid lines). 418 

5.2 Where to reduce emissions? 419 

By substituting the emission sensitivity (26) into Eq. (25), it is straighforward to construct the emission 420 

matrix 𝐸 for the scenario with photochemical smog and therefore the exposure reduction 𝑹 by means 421 

of Eq. (12). Below, 𝑹  is used to identify the best places to reduce emissions in the urban network.  As 422 

in section 4.4, an emissions variation 𝛿𝑄  = 0.10 𝑄̅ is considered for both NO and NO2 emissions (as 423 

the emissions ratio 𝑎 is constant). 424 

  425 
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 426 

 427 

  428 

Figure 9: Exposure reduction achieved by decreasing the emission in the street by a constant quantity 𝛿𝑄 for NO2 (a-c) and 429 
NO (d-f).  For O3 the increase in exposure is shown in(g-i). (a,d,g) and (b,e,h) show the maximum and average values for the 430 

different wind directions. (c,f,i) show the average computed by neglecting self-interactions. Note the colorbar employs a 431 
logarithmic scaling.  432 

 433 

Figure 9 shows the exposure reduction or increase for NO2, NO, and  O3, in the South Kensington case 434 

study. As expected, a reduction 𝛿𝑄  in NOx  emissions leads to an exposure reduction to nitrogen 435 

oxides (Panels a-f). The results are very similar to the passive scalar case (Figure 5), and can nearly be 436 
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reproduced using a single scaling factor per species. This is due to two reasons: (i) the relation between 437 

NO2 and  NO2̃ in the photostationary model is almost linear, especially for large  NO2̃ concentration 438 

(see Figure 8); and (ii) the background concentration and the ratio a are kept constant for all the 439 

streets. Consequently 𝑑𝒈/dNÕx has almost constant entries and the matrix 𝐸 in Eq. (25) is simply 440 

rescaled with respect to the case of the passive scalar. 441 

On the other hand, panels g-i in Figure 9 evidence an exposure increase to ozone. This is in line with 442 

Figure 8 which shows a negative 𝑑𝒈/dNÕx  for ozone in the case study (solid lines). As explained 443 

above, this negative rate depends on the relation between the background and equilibrium ozone 444 

concentration. This result highlights that a side effect of the reduction of vehicular traffic may be an 445 

increase in ozone concentrations, depending on the background concentrations present in the area. 446 

Finally, Figure 8we remark that the sensitivity analysis presented in this section is dependent on the 447 

case study not only due to the dependence of 𝑑𝒈/dNÕx on the background concentration but also 448 

for its dependence on the initial emissions in the streets which provide NOx̃  concentration (see Eqs. 449 

(14)-(15)).  450 

Conclusions 451 

In this work a complex network approach was used to address what is the optimal place to reduce 452 

emissions in an urban neighbourhood. Rather than developing a new air quality model, we introduced 453 

a mathematical formalism inspired by the theory of complex networks and based on the analysis of 454 

physical mechanisms, capable of extending the potential of existing operational tools. In fact, thanks 455 

to our approach, it is ultimately possible to reconstruct a large multiplicity of scenarios starting from 456 

a single dispersion simulation of a passive scalar. 457 

The network was defined by modelling the correlation between emissions and concentrations in 458 

streets as weighted links connecting the streets, i.e. the nodes of the network. In this way, the entire 459 

process of pollutant dispersion was enclosed in the weight matrix A of the network. By means of this 460 

formulation the hypothesis of linearity between emissions and concentrations in the case of non-461 

reactive pollutants was first tested. Then, considering the physics underlying the process, we proposed 462 

a linear scaling of matrix A with the intensity of the external wind. In this way, scenarios with different 463 

emissions in the streets and different intensity of the external wind could be reproduced using a single 464 

weight matrix 𝐴0 constructed from a single dispersion simulation. The network model highlighted the 465 

diagonal-dominancy of the problem and suggested a criterion to significantly reduce the 466 

computational complexity of the solution, eliminating the less significant network connections.  467 

The network description facilitated straightforward translation from polluting concentrations to 468 

citizen exposure: a new weight matrix, the exposure matrix, was derived starting from A which took 469 

into account the number of people exposed in each street. The outdegree of this new matrix provided 470 

a direct metric for exposure reduction in terms of which streets bring the greatest benefits in terms 471 

of health impact at the neighbourhood scale. 472 

Finally, the model was extended to the analysis of photochemical smog. We used a two-step algorithm 473 

to reconstruct the concentrations of reactive pollutants in the streets by applying matrix A and a non-474 

linear function for chemical transformations in the streets. Through a linearization of the exposure 475 

model, we obtained an expression of the exposure reduction metric for reacting chemical species and 476 

we showed that it can be approximated with a rescaling of the metric for the passive case.  477 

The exposure model used in combination with the diagonal dominance of 𝐴 gave clear indication of 478 

what generally the most effective strategy is in terms of health: to reduce emissions in domestic 479 
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streets with the high aspect ratio 𝐻/𝑊, e.g. by making the street one-way. Indeed, the exposure 480 

estimate in Eq. (13) is an accurate measure that can be used to estimate total exposure in a street in 481 

an operational sense without even the need for a network model.  482 

The work presented in this manuscript is straightforward to extend to much larger urban areas, and it 483 

is recommended study more realistic emission reduction scenarios, e.g. considering emissions 484 

reductions in multiple streets rather than a single street. Further research in the application of metrics 485 

and techniques from the theory of complex networks can bring new insights into the analysis of the 486 

results and guide administrations in traffic and emission management. 487 
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