

University of Birmingham

SDF-GA
Li, Tianyang; Ting, He; Wang, Zhongjie; Zhang, Yufeng

Document Version
Peer reviewed version

Citation for published version (Harvard):
Li, T, Ting, H, Wang, Z & Zhang, Y 2019, 'SDF-GA: a service domain feature-oriented approach for
manufacturing cloud service composition', Journal of Intelligent Manufacturing.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 14/09/2018

This is the accepted manuscript for a forthcoming publication in Journal of Intelligent Manufacturing.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Birmingham Research Portal

https://core.ac.uk/display/185511184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.birmingham.ac.uk/portal/en/publications/sdfga(a4d2b214-81c9-4a2e-9a1c-81f521bbbb36).html

1

SDF-GA: a service domain feature-oriented approach for manufacturing cloud service composition

Tianyang Li
1 ∙ Ting He

1,2
 ∙ Zhongjie Wang

1 ∙ Yufeng Zhang
3

1
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

2
College of Computer Science and Technology, Huaqiao University, Xiamen, Fujian 361021, China

3
Birmingham Business School, University of Birmingham, Birmingham B15 2TT, UK

E-mail: xuantinghe@gmail.com; tianyangli1985@gmail.com

Corresponding author: Ting He

Abstract (150-250 words): Cloud manufacturing (CMfg) is a new service-oriented manufacturing paradigm in which shared

resources are integrated and encapsulated as manufacturing services. When a single service is not able to meet some

manufacturing requirement, a composition of multiple services is then required via CMfg. Service Composition and Optimal

Selection (SCOS) is a key technique for efficient manufacturing service composition to create an on-demand Quality of Service

(QoS) to satisfy various user requirements. Given the number of services with the same functionality and a similar level of QoS,

SCOS has been seen as a key challenging research area in CMfg. One effective approach for solving SCOS problems is to use

Service Domain Features (SDF) through investigating the probability of services being used for a specific requirement from

multiple angles. The approach can result in a division of service space, and then help narrow down the service space with large-

scale candidate services. The approach can also search for optimal subspaces that most likely contribute to an overall optimal

solution. In doing so, this paper develops an SDF-oriented genetic algorithm to effectively create a manufacturing service

composition with large-scale candidate services. Fine-grained SDF definitions are developed to divide the service space. SDF-

based optimization strategies are adopted. The novelty of the proposed algorithm is presented based on Bayesian theorem. The

effectiveness of the proposed algorithm is validated through solving three real-world SCOS problems in a private CMfg.

Key words: Service domain features, Service composition and optimal selection, Cloud manufacturing, manufacturing

cloud service composition, genetic algorithm

1 Introduction

With the application of cloud computing, Internet of Things, service computing, virtualization and other information and

communication technologies, cloud manufacturing (CMfg) has gradually realized enterprise applications for creating value-added

services and increasing competitiveness (Pisching et al. 2015; Tao et al. 2017; Ren et al. 2017). As a new type of service-oriented

manufacturing paradigm, all types of manufacturing resources are encapsulated in CMfg as manufacturing services for enabling

complete sharing and integration (Li et al. 2010; Zhang et al 2017b, Wang et al 2017). To satisfy various user requirements on

demand and realize the efficient use of enterprise resources, one of the key technologies in implementing CMfg is Service

Composition and Optimal Selection (SCOS), which involves aggregating various services with different functionalities into a

value-added compositional service to address complex manufacturing tasks (Tao et al. 2013; Kubler et al. 2016). According to the

given user requirements and constraint conditions, the first step of SCOS process in CMfg is to decompose the request into a

composed service execution path with subtasks. Then, candidate service sets for each subtask are collected. Finally, a

corresponding service for each subtask is selected to composite an optimal solution for satisfying user requests. Undoubtedly,

building such a Quality of Service (QoS)-optimal solution is a typical multi-criterion nondeterministic polynomial (NP)-hard

problem (Tao et al. 2013; Zhou and Yao 2017).

Because the manufacturing request is personalized and complicated, the execution path of SCOS becomes long and complex.

In addition, because there is a sharp increase in manufacturing resources in the service pool, an increasing number of

manufacturing services are required to participate in the long and complex execution path (Fatahi and Houshmand 2014; Xiang et

al. 2016; Xue et al. 2016). Indeed, the increasing complexity of manufacturing requests and vast amounts of service candidates

will significantly affect the stability of a CMfg system. In an extreme situation, without an effective algorithm for solving SCOS

2

problems, CMfg can collapse when concurrent, massive numbers of users request plentiful service compositions from a mass of

alternative candidate services with similar functionality and QoS in CMfg (Tao et al. 2015). Moreover, Service Domain Features

(SDFs) (including prior, correlation, and similarity) (Xu et al. 2017), which are important objective regulators in the service

domain, have gradually shaped service applications and evolution in services and manufacturing industries over the long term.

These SDFs reflect the substantive characteristic and applied probability of services used to meet a certain type of requirement

and strongly accelerate the solving of SCOS problems (Xu et al. 2017). Unfortunately, SDFs have been used insufficiently and

unreasonably to design algorithms for solving SCOS problems (Zhou and Yao 2017), and the solving of SCOS problems is still a

key challenge (Zhang et al 2017a).

To overcome these gaps, an SDF-oriented method must first be created to effectively and efficiently solve SCOS problems

(Liu and Xu 2014). This method should take advantage of the fully mined value of SDFs to properly narrow the service space

with large-scale candidate services and to richly search optimal subspaces that most likely contain the global optimal solution.

Despite the importance of developing SDF-oriented methods for SCOS, the literature only refers to single SDF or fragmentary

SDFs to roughly divide the service space and achieve inefficient optimization strategies for obtaining the global optimal solution,

which further causes inefficiencies in solving SCOS problems and inconsistencies between theoretical studies and practical

applications.

No comprehensive method exists in the literature that richly investigates SDFs and applies them to the design of effective

algorithms for solving SCOS. The lack of literature precedent raises three questions: 1) what definitions of SDFs are used to

process the large-scale service space of SCOS in CMfg? 2) How can SDFs be reasonably used to improve the local and global

search capabilities of the algorithms? 3) What are the properties of SDF-oriented algorithms and their performance boundaries for

solving SCOS?

This paper thus proposes an innovative SDF-oriented genetic algorithm (SDF-GA) that can be used to implement CMfg for

effectively solving SCOS problems. The goal is to provide an algorithm to solve SCOS problems with theoretical insights based

on SDFs, particularly for large-scale manufacturing cloud service compositions. The effectiveness and efficiency of the proposed

algorithm have been validated with three application examples and theoretical analysis based on the Bayesian theorem. By

exploiting SDFs for SCOS problems, this work makes novel contributions for CMfg application and realization and extends the

theory of SDF-oriented intelligence optimization.

The paper is structured as follows. Section 2 provides an overview of related SCOS works and illustrates current problems.

Section 3 introduces the formulation of SCOS problems and their general mathematical model. Definitions of SDFs and an

algorithm for dividing the service space are detailed in Section 4. Section 5 elaborates the SDF-oriented GA with optimization

strategies, and the superiority of the SDFs is analysed using the Bayesian theorem. The effectiveness of the SDF-GA is verified

with three case studies in Section 6. Finally, Section 7 concludes the paper and provides future research directions.

2 Related work

The SCOS problem originates from the web service and cloud computing areas and aims at reducing the size of candidate

services and selecting appropriate ones from the remaining services for a composition, thereby improving the efficiency and

quality of service compositions (Tao et al. 2014b; Lemos et al. 2016). In CMfg, various types of manufacturing services with

different QoSs are continually aggregating to form a large service pool and large search space that must be addressed to achieve

the global optimal solution. Hence, SCOS problems in CMfg are more complicated (Xue et al. 2016; Morgan and O’Donnell

2017).

For this NP-hard problem in CMfg, the most widely used approaches are improved heuristic algorithms such as the

Traditional Genetic Algorithm (T-GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Artificial Bee

Colony (ABC) with context-aware (Zhou and Yao 2017), QoS-aware (Huang et al. 2014; Zheng et al 2016; Seghir and Khababa

2016; Chen et al. 2016), and semantic-web-based (Lu and Xu 2017) techniques. These works have furthered the research on

SCOS problems in CMfg. However, they are inefficient at solving large-scale SCOS problems because they do not consider the

SDFs (Zhou and Yao 2017).

Actually, due to the significant influence of SDFs on solving SCOS problems, SDFs have been widely employed to solve

SCOS problems. Some typical research efforts that have used SDFs to boost the performance of algorithms for solving SCOS are

summarized in Table 1.

3

Table 1 Summary of SDF-based methods

The SDF Current methods Advantages Disadvantages

Prior

1. Employ recorded execution sequential patterns or execution

dependency of service to select services for an SCOS problem

(Zhang et al. 2008; Liu et al. 2016)

2. Initialize current optimization algorithms with a historical

solution of a request that is similar to the current user requests for

solving SCOS problems (Xiang et al. 2016)

1. Reuse

historical

patterns or

solutions to

efficiently

solve SCOS

problems

1. Use a single feature
2. Only improve the local

search capability of algorithms
3. Do not consider new services

for solving SCOS problems

Correlation

1. Employ the business correlations of services as the key factor to

negotiate the choice of concrete services for service composition

(Wu et al. 2014; Van et al. 2015)

2. Employ an auxiliary graph to express the QoS correlation-aware

service composition, and design a fast algorithm to search optimal

solutions (Hua et al. 2014)

3. Develop formalized description for the QoS correlation between

two services and design algorithms to discovery correlations to

apply them to service composition (Hua et al. 2014; Tao et al.

2010; Jin et al. 2017)

1. Use

historical

schemes

based on

business and

QoS

correlations

to facilitate

the solving of

SCOS

problems

1. Use a single feature
2. Only improve the local

search capability of algorithms
3. Do not consider new services

and high-frequency services in

solving SCOS problems

Similarity

1. Define similarity measures to determine the closeness of a

historical composition solution with respect to any new request to

reuse existing solutions (Bravo 2014)

2. Employ similarity rating of friendship, social contact, and

community of interest relationships as the filter to select concrete

services for service recommendation (Chen et al. 2016)

3. Employ the internal features of services and end users, such as

locations, configurations, functionality, and user profiles, to

calculate similarity of services and then predict the end-to-end QoS

values of services for composite service (Karim et al. 2015)
4. Establish a framework to use QoS time series inter-correlations

and apply a novel time-series group similarity approach to predict

QoS values for composite service (Ye et al. 2016)

1. Use

historical

solutions and

their

substitutions

to facilitate

the solving of

SCOS

problems

1. Use a single feature

2. Only improve the local

search capability of algorithms

3. Do not use services with

outstanding QoS values for

solving SCOS problems

SDFs

(including

prior,

correlation

and

similarity)

1. Define the main SDFs and analyse the influences of these SDFs

in solving SCOS toward proposing a new Service domain-oriented

Artificial Bee Colony algorithm paradigm (S-ABC) based on the

optimization mechanism of ABC (Xu et al. 2017)
2. Develop a context-aware and Differential Evolution-enhanced

Artificial Bee Colony (DE-caABC) algorithm based on three SDFs

and divisions of the service space for solving SCOS in CMfg

(Zhou and Yao 2017)

1. Narrowed

service space

2. Efficient

algorithms

based on the

influence

mechanism of

SDFs

1. Coarse-grained definitions of

SDFs and insufficient division

of service space

2. Does not use services with

outstanding QoS values
3. Limited improvement of

capabilities of algorithms

4. Lack theoretical analysis and

insights

As seen from the table, single-feature-oriented algorithms can efficiently solve SCOS problems. However, without

combining other features and considering new and outstanding services, the improvement in the search capability of these

algorithms is quite limited. Studies on S-ABC and DE-caABC have demonstrated the superiority of SDFs in improving the

performance of algorithms for solving SCOS problems. However, with coarse-grained definitions of SDFs, an insufficient division

of the service space and the lack of theoretical analysis in these works, the potential of SDFs for SCOS problems remains to be

fully developed. In this paper, we investigate SDFs more deeply and make the division of the service space more reasonable.

Combined with appropriate optimization strategies and theoretical analysis, we attempt to design a more effective and efficient

algorithm to solve SCOS problems with a large-scale service space in CMfg.

3 Problem description and mathematical model

A service request in CMfg is sequential and personalized (Xue et al. 2016). When a request is submitted to a CMfg platform,

it is first pre-processed and transferred to a manufacturing task. Then, the task is decomposed into several subtasks in a service

process. Next, the platform gathers a candidate service set for each subtask. Finally, only one service can be optimally selected

4

from each candidate service set based on multiple objectives or a single objective to be invoked in sequence to construct a

composite service execution path. As shown in Fig. 1, such a SCOS process contains three steps:

(1) Requirement processing and task decomposition: When a user submits a personalized request to the CMfg service, the

request is first clustered into a requirement class ci and transferred to a manufacturing task t (requests in the same class have a

similar task). Simultaneously, a set of QoS attributes Q(t) about the manufacturing task is identified, and the corresponding set of

constrained values of QoS attributes q(t) is determined. Thereafter, the task requirement is divided into a set of subtasks st to form

a service process SP based on the composite service execution path. Accordingly, there are QoS requirements q(sti) for each

subtask with the decomposing of task requirements. In this paper, we define ci={r1, …, rm}∈C={ c1, c2, …, cd}, where rm

represent a certain request, C is the set of requirement classes, and d is the number of classes. SP={st1, st2,…, stj}, where j is the

number of subtasks; Q(t)={Q1, … Qn}; q(t) ={q10, …, qn0}; and q(stj)={q1j, q2j, …, qnj}, where n is the number of attributes, and

qn0 and qnj are the constraint values of the nth QoS attributes for t and stj, respectively.

(2) Matching candidate services for each subtask: For each subtask stj, CMfg will utilize matching algorithms to retrieve

multiple services that satisfy the functional and QoS requirements q(stj). The qualified manufacturing services (MSs) are

combined into a set of candidate services for each subtask. For a specific subtask stj, its corresponding candidate service set is

MS(stj) = {MSj1, MSj2, …, MSjk}, where MSjk is the jth MS for stj.

(3) Service composition and optimal selection: For each subtask, hundreds of services that have the same functionality and

different values of QoS properties can exist. Assuming that a task contains j subtasks and that each subtask has h candidate MSs,

there will be h
j
 feasible solutions. This problem is NP-complete and needs to be solved with the global optimal solution to meet a

user’s requirements.

In this paper, we focus on designing an effective algorithm for step 3.

The value of the QoS attribute Qn of a manufacturing service composition (MSC) is aggregated by the corresponding

attribute values of all subtasks. Let q(MSC1)={q1,msc, q2,msc, …, qn,msc} and q(MSi)={q1,i, q2,i, …, qn,i} express the aggregated QoS

values of MSC and the QoS values of a single service belonging to the MSC; then, qn,msc=f(qn,1, …, qn,j). f is an aggregation

function based on the structure of the composite service execution path. Currently, there are four main workflow patterns in the

composite service execution path: sequential, parallel, selective, and circular. The QoS attributes and their aggregation functions

for types of workflow patterns used in this paper are shown in Tables 2 and 3, respectively.

Table 2 QoS attributes for SCOS

QoS attributes Description

Cost Utility fee of service for each request

Execution time Time to perform the service functionality

Respond time The waiting time before execution

Availability 1-failure rate

Reliability Uptime/(uptime-downtime)

Table 3 QoS aggregation functions for various workflow patterns

QoS attribute Sequence Parallel Switch Loop

Cost (C) ∑ 𝐶(𝑀𝑆𝑖)

𝑘

𝑖=1

 ∑ 𝐶(𝑀𝑆𝑖)

𝑘

𝑖=1

 ∑ 𝑝𝑖 ∗ 𝐶(𝑀𝑆𝑖)

𝑘

𝑖=1

 𝑘 ∗ 𝐶(𝑀𝑆𝑖)

Execution time

(ET)
∑ 𝐸𝑇(𝑀𝑆𝑖)

𝑘

𝑖=1

 𝑚𝑎𝑥(𝐸𝑇(𝑀𝑆𝑖)) ∑ 𝑝𝑖 ∗ 𝐸𝑇(𝑀𝑆𝑖)

𝑘

𝑖=1

 𝑘 ∗ 𝐸𝑇(𝑀𝑆𝑖)

Respond time (RT) ∑ 𝑅𝑇(𝑀𝑆𝑖)

𝑘

𝑖=1

 𝑚𝑎𝑥(𝑅𝑇(𝑀𝑆𝑖)) ∑ 𝑝𝑖 ∗ 𝑅𝑇(𝑀𝑆𝑖)

𝑘

𝑖=1

 𝑘 ∗ 𝑅𝑇(𝑀𝑆𝑖)

Availability (A) ∏ 𝐴(𝑀𝑆𝑖)

𝑘

𝑖=1

 𝑚𝑖𝑛(𝐴(𝑀𝑆𝑖)) ∑ 𝑝𝑖 ∗ 𝐴(𝑀𝑆𝑖)

𝑘

𝑖=1

 ∏ 𝐴(𝑀𝑆𝑖)

Reliability (R) ∏ 𝑅(𝑀𝑆𝑖)

𝑘

𝑖=1

 𝑚𝑖𝑛(𝑅(𝑀𝑆𝑖)) ∑ 𝑝𝑖 ∗ 𝑅(𝑀𝑆𝑖)

𝑘

𝑖=1

 ∏ 𝑅(𝑀𝑆𝑖)

There are two types of QoS attributes: positive and negative (Zhou and Yao 2017). Positive attributes mean that the higher

5

the value of the QoS criteria, the better the quality of the MS, for example, availability and reliability. However, negative

attributes mean that the lower the value of the QoS, the better the quality of the MS, for example, execution time and cost. For a

single-objective optimization problem of SCOS based on a certain QoS attribute, the target and constraint functions can be defined

as follows:

𝑚𝑖𝑛 𝑚𝑎𝑥⁄ 𝑞𝑛,𝑚𝑠𝑐 = 𝑓(𝑞𝑛,1, … , 𝑞𝑛,𝑗)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑞𝑖,𝑚𝑠𝑐∧𝑖≠𝑛 = 𝜑(𝑞𝑖,1, … , 𝑞𝑖,𝑗) ≤ 𝑞𝑖,0

𝑞𝑘,𝑚𝑠𝑐∧𝑖≠𝑛 = 𝜑(𝑞𝑘,1, … , 𝑞𝑘,𝑗) ≥ 𝑞𝑘,0 (1)

where 𝑞𝑛,𝑚𝑠𝑐 is the target QoS attribute of an MSC that must be optimized, and 𝑓(𝑞𝑛,1, … , 𝑞𝑛,𝑗) is its aggregation function based

on values of the corresponding QoS attribute of the selected MSs. If 𝑞𝑛,𝑚𝑠𝑐 is positive, then the maximization function should be

used; otherwise, the minimum function should be used. Similarly, 𝜑(𝑞𝑖,1, … , 𝑞𝑖,𝑗) is the aggregation function for a constrained

QoS attribute, and 𝑞𝑖,0 and 𝑞𝑘,0 are constrained values.

For a multi-objective optimization problem, the values of positive and negative QoS attributes should be normalized via the

following formulas.

𝑞𝑘,𝑛𝑜𝑟− = {

𝑞𝑘,𝑚𝑎𝑥−𝑞𝑘,𝑚𝑠𝑐

𝑞𝑘,𝑚𝑎𝑥−𝑞𝑘,𝑚𝑖𝑛
, 𝑖𝑓𝑞𝑘,𝑚𝑎𝑥 ≠ 𝑞𝑘,𝑚𝑖𝑛

1 , 𝑖𝑓𝑞𝑘,𝑚𝑎𝑥 = 𝑞𝑘,𝑚𝑖𝑛

 (2)

𝑞𝑘,𝑛𝑜𝑟+ = {

𝑞𝑘,𝑚𝑠𝑐−𝑞𝑘,𝑚𝑖𝑛

𝑞𝑘,𝑚𝑎𝑥−𝑞𝑘,𝑚𝑖𝑛
, 𝑖𝑓𝑞𝑘,𝑚𝑎𝑥 ≠ 𝑞𝑘,𝑚𝑖𝑛

1 , 𝑖𝑓𝑞𝑘,𝑚𝑎𝑥 = 𝑞𝑘,𝑚𝑖𝑛

 (3)

where 𝑞𝑘,𝑚𝑎𝑥 and 𝑞𝑘,𝑚𝑖𝑛 are the minimum and maximum aggregated values of the kth QoS criteria of the MSC; 𝑞𝑘,𝑚𝑎𝑥 =

∑ 𝑚𝑎𝑥𝑞𝑘,𝑡
𝑗
𝑡=1 and 𝑞𝑘,𝑚𝑖𝑛 = ∑ 𝑚𝑖𝑛𝑞𝑘,𝑡

𝑗
𝑡=1 , where max 𝑞𝑘,𝑡 and min 𝑞𝑘,𝑡 are the minimum and maximum values of the kth QoS

criterion from the candidate service set t.

Based on the normalized values, a utility function can be used to transform the multi-objective optimization problem into a

single maximization optimization problem as follows:

𝑚𝑎𝑥𝑓(𝑋) = ∑ 𝑤𝑖𝑞𝑖,𝑋

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑞𝑖,𝑚𝑠𝑐 ≥ 𝑞𝑖,0 ∨ 𝑞𝑖,𝑚𝑠𝑐 ≤ 𝑞𝑖,0

𝑞𝑘,𝑚𝑠𝑐 ≤ 𝑞𝑘,0 (4)

where f(X) is the utility function, 𝑤𝑖 is the weight for each aggregated value of QoS criteria, 𝑞𝑖,𝑚𝑠𝑐 is the aggregated values of the

ith QoS criterion of the MSC, and 𝑞𝑖,0 are constrained values for negative and positive QoS attributes.

Commonly, the selection of a multi-objective or single-objective optimization problem for SCOS relies on the given request.

In this paper, we embody multi-objective optimization models to verify our proposed algorithm in section 5.

6

Fig. 1 SCOS process in CMfg

4 Service space preprocessing

4.1 Service domain features

Three features exist in a typical service domain, prior, correlation and similarity, which are defined in the following.

Definition 1 (Prior). The prior is a posterior probability of a candidate service MSij being used to satisfy a request in cd. This

probability is experiential knowledge abstracted from the service-composition execution record of cd. From an intuitional

perspective, for a specific service request in class cd, there always exist services or solutions with higher use frequency and user

satisfaction. This objective law can be expressed as a potential use probability of 𝑀𝑆𝑖,𝑗 which can be calculated by the Bayesian

formula as follows:

𝑃(𝑐𝑑+/𝑀𝑆𝑖,𝑗) =
𝑃(𝑐𝑑+)𝑃(𝑀𝑆𝑖,𝑗/𝑐𝑑+)

𝑃(𝑀𝑆𝑖,𝑗)
 (5)

where 𝑃(𝑐𝑑+) =
𝐻+

𝐻
 is the percentage of positive records (records with higher user satisfaction or another criterion) from using the

partition function 𝑈(ℎ) ≥ 𝑇, 𝑈(ℎ) is the partition function for calculating the degree of user satisfaction or another criterion, 𝑇 is

the threshold of 𝑈(ℎ), H is the number of complete historical records, H
+
 is the number of positive records that satisfy 𝑈(ℎ) ≥ 𝑇,

H
-
 =H-H

+
is the number of negative records, 𝑃(𝑀𝑆𝑖,𝑗/𝑐𝑑+) =

𝑁+

𝐻+ is the used probability that 𝑀𝑆𝑖,𝑗 is used in positive records,

𝑁+ is the number of occurrences of 𝑀𝑆𝑖,𝑗 in positive records, 𝑃(𝑀𝑆𝑖,𝑗) =
𝑁

𝐻
 is the probability of 𝑀𝑆𝑖,𝑗 being used by requests in

cd, and N is the occurrence number of 𝑀𝑆𝑖,𝑗 in the overall records of cd.

The prior value of an existing solution in the historical records of cd can be calculated by the naive Bayes formula. The reuse

probability of solution s can be calculated as follows:

𝑃(𝑠 𝑣𝑗⁄) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑣𝑗∈𝑉

𝑃(𝑣𝑗) ∏ 𝑃(𝑀𝑆𝑖 𝑣𝑗⁄)𝑖 (6)

Here, V = {𝑐𝑑+, 𝑐𝑑−}, and MSi is the basic service of solution s. We use the normalized 𝑃 to represent the prior value of solution

s.

As an example, Table 4 shows a segment of historical data. Based on the above formulas, the posterior probability of a

1. Requirement processing and task decomposition

C1 C2 C3

2.Matching candidate services for each subtask

MS11

MS13

MS12

MS14 MS16

st1

st2

st3

st4st1

st2

st3

st4st1 st2 st3

MS31

MS33

MS32

MS34 MS36

MS41

MS43

MS42

MS44 MS46

MS21

MS23

MS22

MS24 MS26

Service

request

classes

Design

service

Experiments

service
Simulation

service

Manufacturing

service

Manufacturing

service composition

Service requests

3.Service composition and optimal selection

MS12

MS22

MS32

MS42

7

certain candidate service and solution can be calculated, specifically, 𝑃(𝑐1 𝑠11⁄) =
4

6
×

3

4
4

6

= 0.75, 𝑃(𝑅1/𝑐1+) =
4

6
×

3

4
×

4

6
×

1

2
×

1

2
=

1

12
, and 𝑃(𝑅1/𝑐1−) =

1

144
.

Table 4 A segment of historical data

No. Request cluster Service execution record User satisfaction

R1

c1

s11, s22, s31, s42

c1+
R2 s12, s21, s32, s41

R3 s11, s21, s33, s41

R4 s11, s22, s32, s44

R5 s11, s22, s31, s42 c1- R6 s12, s21, s32, s41

R7

c2

s16, s24, s33, s44, s51

c2+ R8 s16, s23, s32, s44, s53

R9 s11, s21, s32, s42, s53

R10 s11, s21, s32, s42, s53 c2-

R11

c3

s12, s22, s34, s44, s54, s63, s77

c3+ R12 s14, s24, s31, s43, s51, s62, s71

R13 s11, s22, s32, s43, s52, s62, s75

R14 s14, s24, s31, s43, s51, s62, s71 c3-

Definition 2 (Correlation). The correlation is an evaluation value of the association relationship of services (𝑠𝑖𝑘, 𝑠𝑗𝑚, …)

that are synergistically used to meet the request in cd. The correlation between services includes business, statistical and QoS

correlations. In this paper, we focus on both the business and QoS correlations. For the business correlation, the correlation value

of synergistic services can be calculated as follows:

𝐶𝑏(𝑐𝑑 (𝑀𝑆𝑖𝑘, 𝑀𝑆𝑗𝑚, …)⁄) = {
𝑁+−𝑁−

𝑁+ , if 𝑁+ − 𝑁− > 0

0, 𝑒𝑙𝑠𝑒
 (7)

where N
+
 and N

-
are the occurrence numbers of 𝑀𝑆𝑖𝑘, 𝑀𝑆𝑗𝑚, … in positive and negative records, respectively. Take the synergistic

two MSs s21 and s41 in Table 3 as an example, 𝐶𝑏(𝑐1 (𝑀𝑆2,1, 𝑀𝑆4,1)⁄) =
2−1

2
=

1

2
.

For the QoS correlation, we only consider the two neighbour services, which have higher QoS dependence. In the historical

data of the request class cd, except for the starting and final MSs of each record, each MS has two sets of neighbouring MSs. For a

given 𝑀𝑆𝑖𝑘, the first set F includes MSs that executed before 𝑀𝑆𝑖𝑘 in different records, and the second set S contains MSs that

executed after 𝑀𝑆𝑖𝑘. For example, in Table 2, two sets of neighbouring MSs of s21 in c1 are {s11, s12} and {s32, s33}, respectively.

For each set, there is an average value of the QoS correlation values for evaluating the difference degree of the QoS correlation

between 𝑀𝑆𝑖𝑘 and each MSj in the set. The average value can be calculated by

𝜑𝑄𝑜𝑆(𝑐𝑑 (𝑀𝑆𝑖𝑘, 𝑀𝑆𝑗)⁄) =
∑ 𝐶𝑄𝑜𝑆(𝑐𝑑 (𝑀𝑆𝑖𝑘,𝑀𝑆𝑗)⁄)𝑚

𝑗=1

𝑚
 (8)

where 𝐶𝑄𝑜𝑆(𝑐𝑑 (𝑀𝑆𝑖𝑘, 𝑀𝑆𝑗)⁄) is the normalization function and m is the number of MSs in the set. Its formula is defined as the

following:

𝐶𝑄𝑜𝑆(𝑐𝑑 (𝑀𝑆𝑖𝑘, 𝑀𝑆𝑗)⁄) =
𝑓(𝑀𝑆𝑖𝑘,𝑀𝑆𝑗)−𝑓𝑚𝑖𝑛(𝑀𝑆𝑖𝑘,𝑀𝑆𝑗)

𝑓𝑚𝑎𝑥(𝑀𝑆𝑖𝑘,𝑀𝑆𝑗)−𝑓𝑚𝑖𝑛(𝑀𝑆𝑖𝑘,𝑀𝑆𝑗)
(9)

where 𝑓(𝑀𝑆𝑖𝑘 , 𝑀𝑆𝑗𝑚) is the utility function, being the same as the function in Eq. 4 for calculating an average aggregated QoS

value of two neighbour services in the historical data. Its formula is defined as the following:

𝑓(𝑀𝑆𝑖𝑘 , 𝑀𝑆𝑗𝑚) = {
∑ ∑ 𝑤𝑗𝑞𝑗

𝑛
𝑗=1

𝑁+

𝑘=1 −∑ ∑ 𝑤𝑗𝑞𝑗
𝑛
𝑗=1

𝑁−

𝑘=1

𝑁+−𝑁− 𝑖𝑓 𝑁+ ≥ 𝑁−

0 𝑒𝑙𝑠𝑒

 (10)

where N
+
 and N

-
are the occurrence numbers of 𝑀𝑆𝑖𝑘 and 𝑀𝑆𝑗𝑚 in positive and negative records, respectively; 𝑞𝑗 is the

aggregated value of the jth QoS criterion for the two neighbouring services 𝑀𝑆𝑖𝑘 and 𝑀𝑆𝑗𝑚 and should be normalized by Eq. 2 or

Eq. 3 based on all aggregated jth QoS values of 𝑀𝑆𝑖𝑘 and each 𝑀𝑆𝑗𝑚 in a neighbouring service set.

8

When 𝜑𝑄𝑜𝑆(𝑐𝑑 (𝑀𝑆𝑖𝑘, 𝑀𝑆𝑗)⁄) is very small, the difference degree of the QoS correlation between 𝑀𝑆𝑖𝑘 and each 𝑀𝑆𝑗 is

very large. Hence, services with the largest value of 𝐶𝑄𝑜𝑆(𝑐𝑑 (𝑀𝑆𝑖𝑘 , 𝑀𝑆𝑗)⁄) should be considered services with the highest QoS

correlation.

For example, we assume that we initially use 𝑓(𝑀𝑆𝑖𝑘, 𝑀𝑆𝑗𝑚) to calculate two values {2, 1} for services in {s11, s12} and then

use 𝐶𝑄𝑜𝑆(𝑐𝑑 (𝑀𝑆𝑖𝑘 , 𝑀𝑆𝑗)⁄) to obtain two normalized values {1, 0}. The difference degree of QoS correlation between s21 and s11

and between s21 and s12 can be calculated by 𝜑𝑄𝑜𝑆(𝑐𝑑 (𝑀𝑆𝑖𝑘, 𝑀𝑆𝑗)⁄) = 0.5. In other words, MSs s21 and s11 have a higher QoS

correlation than do s21 and s12, and the greater value with 𝐶𝑄𝑜𝑆(𝑐𝑑 (𝑀𝑆𝑖𝑘, 𝑀𝑆𝑗)⁄) represents the higher QoS correlation.

Definition 3 (Similarity). The similarity is the similarity degree of QoS values between two candidate MSs that have the

same service functionalities and belong to the same candidate service set. There are three types of similarity. As shown in Fig. 2,

the first type is called superior similarity, which means that each QoS index 𝑀𝑆𝑖𝑘 ∙ 𝑞𝑗 is better than 𝑀𝑆𝑖𝑡 ∙ 𝑞𝑗 (we assume that all

QoS attributes are positive in Fig. 2). The second type is the general similarity, which represents that some values of 𝑀𝑆𝑖𝑘 ∙ 𝑞𝑗 are

better than the corresponding value of 𝑀𝑆𝑖𝑡 ∙ 𝑞𝑗 , and the remaining values of the QoS attributes are not better. The last type is the

opposite of the first type, namely, the inferior similarity. In this paper, we only consider the superior and relative similarities.

Moreover, for new services with unknown QoS values, we employ prediction methods (Karim et al. 2015; Feng and Huang, 2018)

to predict QoS values of new services for calculating similarities. The similarity values can be calculated by Eq. 12 and Eq. 13.

𝑆𝑠(𝑐𝑑 𝑀𝑆𝑖𝑘⁄ , 𝑀𝑆𝑖𝑡) = 1 +
|𝑓(𝑀𝑆𝑖𝑡)−𝑓(𝑀𝑆𝑖𝑘)|

𝑓(𝑀𝑆𝑖𝑘)
 (11)

𝑆𝑟(𝑐𝑑 𝑀𝑆𝑖𝑘⁄ , 𝑀𝑆𝑖𝑡) =
1

√∑ (𝑀𝑆𝑖𝑡∙𝑞𝑗−𝑀𝑆𝑖𝑡∙𝑞𝑗𝑗)2+1
 (12)

Here, 𝑓(𝑋) = ∑ 𝑤𝑗𝑞𝑗,𝑋
𝑛
𝑗=1 is the utility function of the QoS value for an MS X; 𝑞𝑗,𝑋 is the value of a certain QoS attribute

normalized by Eq. 2 or Eq. 3 based on the same type of QoS values of MSs in the same candidate MSs set; 𝑆𝑟 is the general

similarity function based on the Euclidean distance; and 𝑀𝑆𝑖𝑡 ∙ 𝑞𝑗 is the normal value of QoS.

(a) Superior similarity (b) General similarity (c) Inferior similarity

Fig. 2 Examples of different similarities

With the above-defined SDFs, for a specific service request in cd with the historical data about cd, the prior feature can be

used to identify prior services and solutions that can be used to satisfy the request. The correlation feature can further find the

high-frequency service schemas from the perspectives of business correlation and QoS correlation. These schemas are additional

supplements for discovered high-probability services. Moreover, based on the identified services and schemas, using the similarity

feature to search similar services with them, the number of feasible services can increase, and additional outstanding services can

be found based on the superior similarity. In other words, SDFs can be used to effectively segment the whole service space and

reduce the search space for algorithms to find the global optimal solution. With the increasing candidate service sets, services

identified by prior and correlation features can be used to compose the local optimal solutions, and services found based on

similarity can be used to compose the global optimal solution. The boundaries of the space division are clearer. Consequently, the

reasonable utilization of SDFs to divide the whole candidate service set and combination to design appropriate search strategies of

algorithms can dramatically promote the performance of algorithms for searching for the global optimal solution. Next, we define

the division of service space and discuss the design strategies of algorithms influenced by SDFs.

4.2 Service space division

With fine-grained features, the whole candidate service set for a service request Sp can be divided into the prior Service Set

(PriS), Correlation Service Set (CorS), Similar Service Set (SimS) and General Service Set (GenS). Accordingly, the service space

is divided into four subspaces. The formal description of these service sets can be expressed as follows.

javascript:void(0);
javascript:void(0);

9

1. PriS(Sp, cd)={s| s∈Sp Ʌ P(cd+/s)≥ Pt }

where 𝑆𝑝 = 𝑗𝑆𝑗 is the whole candidate service set for a service request in cd, Sj is the candidate service set for each subtask in the

service process of cd, Pt is the threshold of the prior value of the candidate service based on the partition function 𝑈(ℎ) ≥ 𝑇, and

Pt= 0.5 might be the lower limit value with a certain value T.

2. CorS(Sp, cd)= CorS(Sp, cd)1∨CorS(Sp, cd)2

CorS(Sp, cd)1={(si, sj…) | si, sj…∈Sp, ∃ 𝐶𝑏(𝑐𝑑 (𝑠𝑖 , 𝑠𝑗 , …)⁄) ≥ 𝐶𝑏0}

CorS(Sp, cd)2={(si, sj)| si∈PriS(Sp, cd) Ʌ sj∈Sp, ∃ 𝐶𝑄𝑜𝑆(𝑐𝑑 (𝑠𝑖 , 𝑠𝑗)⁄) ≥ 𝐶𝑄𝑜𝑆1 Ʌ 𝜑𝑄𝑜𝑆(𝑐𝑑 (𝑠𝑖 , 𝑠𝑗)⁄) ≤ 𝑘}

where 𝐶𝑏0 and 𝐶𝑄𝑜𝑆1 are thresholds based on the partition function 𝑈(ℎ) ≥ 𝑇; 𝐶𝑏0= 0 might be the lowest limits with 𝑇; and

𝐶𝑄𝑜𝑆1 = 1 must be the upper limits when 𝜑𝑄𝑜𝑆(𝑐𝑑 (𝑠𝑖, 𝑠𝑗)⁄) is smaller than the threshold k; k should be smaller than 0.5.

3. SimS(Sp, cd)={s| s∈Sp Ʌ sj∈(PriS(Sp, cd)∨CorS(Sp, cd)), ∃𝑆𝑠(𝑐𝑑 𝑠⁄ , 𝑠𝑗) ≥ 𝑆𝑠0∨𝑆𝑟(𝑐𝑑 𝑠⁄ , 𝑠𝑗) ≥ 𝑆𝑟0}

where 𝑆𝑠0 and 𝑆𝑟0 are thresholds of similarity.

4. GenS(Sp, cd)= Sp- PriS(Sp, cd)- CorS(Sp, cd)- SimS(Sp, cd)

The above descriptions indicate dependencies among the four sets. CorS(Sp, cd) partly relies on PriS(Sp, cd) because the

subset CorS(Sp, cd)2 only covers services that have a QoS correlation with services in PriS(Sp, cd). If a service belongs to both

PriS(Sp, cd) and CorS(Sp, cd), it should be allocated to CorS(Sp, cd) to retain the correlation between services and ensure that

PsɅCs=∅. SimS(Sp, cd) is completely dependent upon PriS(Sp, cd) and CorS(Sp, cd). It attempts to cover all similar and superior

services with services in PriS(Sp, cd) and CorS(Sp, cd). In this case, if the PriS(Sp, cd) contains feasible services for a certain

request, based on the dependence relationships, CorS(Sp, cd) and SimS(Sp, cd) then can provide better services (even new services

that are not being used and records in historical data can be identified by the similarity feature) for this request. It means that the

first three feature sets might contain the global optimal solution. The procedure for dividing the service space is shown in Alg. 1.

Alg. 1 Processing the service space

input: Historical data H, U(h), T, candidate service set Sp

Output: four candidate service sets

PriS, CorS, SimS and GenS← empty set

H
+
, H

-
 ←employ U(h)≥T to divide H

Loop for i from 1 to |Sp| do

 Pi← employ Eq. (5) to calculate prior value for service i

 If Pi≥Pt=0.5 then add service i to PriS and add Pi to value

set Vp

Loop for i from 1 to number of solutions in PriS do

 Ps← employ Eq. (6) to calculate prior value for solution i

 Add Ps to Vp and rank solution with Ps

Cs← employ Apriori algorithm to get service schemes

Loop for i from 1 to |Cs| do

 Ci← employ Eq. (8) to calculate correlation value for

service scheme i

 If Ci > Cb0=0 then add service scheme i to CorS and Ci to

value set Vc

PriS← PriS - (PriS Ʌ CorS)

Loop for i from 1 to |PriS| do

 F, S← construct two neighboring service sets for service i
 If |F| ≥ 2 then φ← employ Eq. (9) to calculate the degree

value

 If φ≤ k=0.5 then add service i and the service in S that has

the value 1 calculated by Eq. (10) to CorS (if service

i and the service are not in CorS) and add the

corresponding value 1 to Vc

 If |S| ≥ 2 then φ← employ Eq.(9) to calculate the degree

value

 If φ≤ k=0.5 then add service i and the service in S that has

the value 1 calculated by Eq.(10) to CorS (if service

i and the service are not in CorS) and add the

corresponding value 1 to Vc

PriS← PriS - (PriS Ʌ CorS)

10

GenS← Sp-(PriS Ʌ CorS)

Loop for i from 1 to |PriS Ʌ CorS| do

 S← GenS Ʌ Sj

 loop for j from 1 to |S| do

 If service j is the superior service then Sj← employ Eq. (12)

to calculate the similarity value, add service j to

SimS, and add value Sj to Vs

 If service j is the relative service then do

 Sj← employ Eq. (13) to calculate the similarity value

 If Sj≥ Sro=0.90 then add service j to SimS, add value Sj to

Vs

GenS← GenS-(GenS Ʌ SimS)

Return PriS, CorS, SimS and GenS

The above algorithm can be used to divide the service space properly. The thresholds for PriS and CorS are set with Pt = 0.5

and Cb0 = 0. They rely on the threshold T. When a more strict value T (a larger one if T is positive or otherwise a small one) is

used, Pt and Cb0 should be set with smaller value, whereas greater values might be appropriate. The threshold k is set to 0.5, which

is a basic value for the difference degree of QoS correlations. If prominent QoS correlations are expected, a small value should be

used. Similarly, the threshold 𝑆𝑠0 is set to 1, which means that if a service is the superior service over a service in PriS and CorS, it

should be classified in the SimS. The relative similarity threshold Sro is set to 0.9. It is a key value influencing the scale of SimS.

Except for the thresholds 𝑆𝑠0 and Sro, the scale of SimS also relies on the scales of PriS and CorS. In other words, neglecting the

influence of the thresholds of PriS, CorS and SimS, the utility function and threshold T determine the scales of the three feature

sets. Once four service sets are determined, the CMfg system can maintain and update these service sets regularly, which can be

used to facilitate the solving of SCOS problems.

Considering the superiority of divisions of service space, the strategies for improving algorithms can be summarized as

follows:

(1) Initialize the appropriate number of individuals in the initial population from the first three service sets to obtain better

initial positions;

(2) Control the search direction of the algorithms for widely searching the three feature sets first; and

(3) Improve the fitness function to make more individuals from the three feature sets survive and to reduce deception

problems.

5 Service domain feature-oriented genetic algorithm

Based on the strategies for improving algorithms fully considering the influence of service domain features, this paper

proposes a service domain feature-oriented genetic algorithm (SDF-GA) based on improving the initialization of the initial

population, genetic operators and fitness function.

5.1 Initial population of SDF-GA

The searching strategy used by SDF-GA is to search for the global optimal solution in all subspaces simultaneously, which

means that individuals in the initial population should be initialized from four service sets. To retain the diversity of the

population, we initialize better individuals and deeply search each subspace, and a certain number of individuals should be

generated from each set. The number of individuals from each feature set can be equal or correspond to the proportion of feature

sets. In this paper, the proportion of each set is used as the number of individuals generated from each set. All individuals can be

expressed as X=(x1, x2, …, xn), where xn is the selected service for a subtask. As shown in Fig. 3, an individual is encoded by the

real serial numbers of the selected service, and the length of an individual is the number of subtasks involved in an MSC.

Individuals from GenS are randomly generated. For the PriS, CorS and SimS sets, three strategies are used to initialize

individuals. The first strategy is to randomly generate individuals. The second strategy is to generate individuals for max ∏ (1+vj),

and vj is the feature value of selected service j. The third strategy is to reuse the existing solution, which has the highest probability

with feature values based on Eq. 6. Use probabilities of these strategies are equal. Alg. 2 shows the common procedure for

11

generating individuals from three feature sets. When the algorithm generates individuals from CorS, different sets of correlation

services are selected randomly simultaneously.

Alg 2. Generate individuals from the feature set

input: service set S, feature value set V, N

Output: a set of individuals

Individual set Is← empty set

Loop for i from 1 to N do

x ← a random integer from 1 to 3

switch (x)

case 1:

Xi← randomly select a service xn from S for each

subtask to generate an individual

add Xi to Is, break

case 2:

 Xi← randomly select a service xn from S for each

subtask to generate an individual with max

∏ (1+vj)

 add Xi to Is, break

case 3:

 If (solutions are insufficient) then do

 k ←a random integer from 1 to 2

 If k=1 then Xi← randomly select a service xn from

S for each subtask to generate an

individual

 else Xi← randomly select a service xn from S for

each subtask to generate an

individual with max ∏ (1+vj)

 else Xi← select the best solution from S

 add Xi to Is, break

return Is

The above algorithm is a universal algorithm for generating individuals from three feature sets. When a feature set lacks

services for constituting integrated individuals, relative services can be selected from other feature sets in the corresponding

candidate service list first; then, the last choice is to select a service from GenS. The feature values of all services in GenS are set

to 0.

Fig. 3 The coding scheme of a genome

5.2 Operators of SDF-GA

The crossover operator in SDF-GA is a single-point crossover that selects a location of two individuals to exchange their

xij

MSi1

 xht xkl

...

MSij

MSim

MSin

...

...

PriS

CorS

...

SimS

GenS

MSi1

...

MSij

MSim

MSin

...

...

PriS

CorS

...

SimS

GenS

Genome

Candidate

services

...
...

12

services after the location is selected. To search the three feature sets as widely as possible, three strategies are used to generate

one offspring based on two randomly selected parent individuals. The first strategy is to search the location of two parent

individuals for crossover to generate one offspring with the maximum value of ∏ (1+vj). The second strategy is to find the

location of two parent individuals for crossover to generate one offspring with a maximum value of ∑Nj, and Nj is the number of

services from the feature set. The third strategy is to randomly select a location for crossover to generate an offspring with random

maximum ∏ (1+vj) or ∑Nj. The probabilities of being used for each strategy are equal. Alg. 3 shows the reproduction algorithm

with two selected parents. Two parents generate one offspring in this algorithm.

Alg. 3 REPRODUCTION of an individual

Input: Xi, Xj feature value sets Vp Vc Vs

Output: an individual

So ← empty set

Xn, Vn ← empty individual and zero

x ← a random integer from 1 to 3

Switch (x)

 Case 1:

loop for i from 1 to |Xi|-1 do

So ← generate two offsprings by exchanging

services Xi and Xj after service i

Loop for i from 1 to 2 do

 V← calculate feature value with ∏ (1+vj) for

offspring i in So

 If V>Vn then Vn ← V and Xn ←offspring i

 break

 Case 2:

loop for i from 1 to |Xi|-1 do

So ← generate two offsprings by exchanging

services Xi and Xj after service i

Loop for i from 1 to 2 do

 V← calculate the number of services in feature sets

with ∑Nj for offspring i in So

 If V>Vn then Vn ← V and Xn ←offspring i

 break

 Case 3:

k ← Randomly select a number from 1 to |Xi|

So ← generate two offsprings by exchanging

services Xi and Xj after service k

t← Randomly select a number from 1 to 2

If t=1 then do

Loop for i from 1 to 2 do

 V← calculate feature value with ∏ (1+vj) for

offspring i in So

 If V>Vn then do

Vn ← V and Xn← offspring i

 Else do

Loop for i from 1 to 2 do

 V← calculate the number of services in feature sets

with ∑Nj for offspring i in So

 If V>Vn then do

 Vn ← V and Xn ←offspring i

 break

Return Xn

The mutation operator is also a single-point mutation that selects a position of an individual and exchanges the service in the

selected position with the other service in the candidate service list. To increase the diversity of new generations, a simple strategy

is used to mutate the selected individual. The mutation operator randomly selects a position in the newly generated individual and

randomly replaces the selected candidate service with another one from other sets in the candidate list. Specifically, if the selected

service belongs to the feature sets, then the substitutive service should be selected from GenS. Otherwise, if the selected service is

from GenS, the substitutive service is equally selected from the feature sets. Alg. 4 shows the algorithm for the mutation operator.

13

Alg. 4 MUTATE

Input: Xi

Output: an individual

k ← Randomly select a number from 1 to |Xi|

If xk is from Gens then do

x ← a random integer from 1 to 3

 Switch (x)

 Case 1:

 xk ← Exchange xk with randomly selected

service from PriS break

 Case 2:

xk ← Exchange xk with randomly selected

service from CorS break

 Case 3:

xk ← Exchange xk with randomly selected

service from SimS break

Else xk ← Exchange xk with randomly the selected

service from GenS

Return Xi

5.3 Fitness function of SDF-GA

For SDF-GA, the fitness of an individual should not only reflect its QoS utility but also indicate how the individual can

satisfy SDF constraints for searching feature subspaces. Consequently, the optimization problem and SFD constraints should all be

considered. For SDF-GA, the fitness function can be defined as follows:

𝐹(𝑋𝑖) = 𝑤1𝜑(𝑓(𝑋)) + 𝑤2
𝜂

𝑇
𝑓𝑆𝐷𝐹(𝑋𝑖) (13)

where 𝑓(𝑋𝑖) is the objective function and 𝜑(𝑦) is the transfer function based on transformational rules from the objective to the

fitness functions. 𝑓𝑆𝐷𝐹(𝑋𝑘) = ∏ 𝑣𝑗𝑗 is the SDF constraint function, 𝑣𝑗 is the feature value of service j in the individual Xk, and 𝑁𝑗

is the service number from each feature set. 0 ≤ 𝜂 ≤
𝑚𝑎𝑥𝑓(𝑋𝑘)−𝑚𝑖𝑛𝑓(𝑋𝑘)

𝑚𝑎𝑥𝑓𝑆𝐷𝐹(𝑋𝑘)
 is the balanced coefficient for the SDF function T is the

number of iterations, and 𝑤𝑖 is the weight, ∑ 𝑤𝑖𝑖 = 1. The coefficient𝜂 𝑇⁄ decreases with each iteration, which ensures that later

iterations focus on the true fitness of individuals and prevent the algorithm from becoming trapped in local optima in a certain

subspace. In this paper, we set to w1=w2=0.5.

However, the divided service space based on SDFs makes the search landscape more rugged. In searching for the global

optimal solution, feature subspaces that might contain the global optimal solution must be fully explored. The fitness-sharing

niching technology (Wu et al. 2014) is used by the GA to perform more searches in each subspace and to maintain the diversity of

a population to mitigate premature convergence. The amendatory fitness function is defined as follows:

𝐹𝑛𝑖𝑐(𝑋𝑖) =
𝐹(𝑋𝑖)

∑ 𝑆ℎ,𝑖ℎ∈𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 (14)

Here, ∑ 𝑆ℎ,𝑖ℎ∈𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 represents the crowdedness degree of individual Xi in its niche. 𝑆ℎ,𝑖 is the sharing value between Xi and

Xh and can be calculated as follows:

𝑆ℎ,𝑖 = {

𝜎−𝑑ℎ,𝑖

𝜎
, 𝑖𝑓𝑑ℎ,𝑖 < 𝜎

0 , 𝑖𝑓𝑑ℎ,𝑖 ≥ 𝜎
 (15)

where 𝜎 is a defined sharing radius and 𝑑ℎ,𝑖 is the number of different services between Xh and Xi.

Using the amendatory fitness SDF-GA, highly similar individuals are discouraged. For example, Xi= {x12, x23, x37, x42, x51,

x66}, Xj={x16, x29, x37, x42, x55, x62} and Xk={x16, x29, x37, x43, x55, x62} are three individuals with fitness values of 0.6, 0.8 and 0.9,

respectively. di,j=4, di,k=5 and dj,k=1; if 𝜎 is set to 2, then Si,j=0, Si,k=0, Sj,k=0.5 and Si,i= Sj,j= Sk,k=1. Using Eq. 14,

Fnic(Xk)=F(Xk)/(Si,k+ Sj,k+ Sk,k)=0.9/1.5=0.6. Similarly, we find Fnic(Xi)=0.6 and Fnic(Xj)=0.533. Hence, the two closer individuals Xj

and Xk are suppressed to some extent, and individual Xi, which uniquely exploits areas of the search space, is encouraged for

evolution.

14

Based on the above-designed strategies, Alg. 5 shows the pseudocode of SDF-GA.

Alg. 5 Pseudocode of SDF-GA

Input: N, r, m, A, C, S1, S2, wi

Output: an individual

preprocessing the service space: employ Alg. 1 to generate feature sets

initialize initial population P: employ Alg. 2 to generate 𝛼 ∗ 𝑁, 𝛽 ∗ 𝑁, and 𝛾 ∗ 𝑁 individuals from each feature set

and randomly generate 𝛿 ∗ 𝑁 individuals from GenS
fitness evaluation: for each individual, employ Eq. 13 to calculate the fitness 𝐹𝑛𝑖𝑐(𝑝𝑖)

repeat

new-population Pn ← empty set

selection: add (1 − 𝑟) ∗ 𝑁 individuals from P to Pn with the roulette method

crossover and mutation:

loop for i from 1 to ∞ do

 newchild ← empty

 x, y ← randomly select two individuals from P

 child ← employ Alg. 3 to generate an individual

 ∆𝑓 = 𝑓(𝑐ℎ𝑖𝑙𝑑) − 𝑚𝑎𝑥(𝑓(𝑥), 𝑓(𝑦))

 if ∆𝑓>0 Then newchild ← child

 else newchild ← child only accepted with probability 0.5

 If newchild is not empty then do

 n++

 If small random probability s ≤ m then do

newchild ←employ Alg. 4 to generate an individual

 Add newchild to Pn

 If n =𝑟 ∗ 𝑁 then break

 update: P ← Pn

until stopping criteria are satisfied
return the best individual in P, according to 𝑓(𝑝𝑖)

5.4 Convergence analysis

Intuitively, SDF-GA can achieve better convergence than traditional intelligence optimization algorithms, such as T-GA,

PSO, and ABC, because it employs rich prior knowledge. We present an extreme example – if SDF-GA directly uses solutions

found by a traditional intelligent optimization algorithm as the initial population to search for the best solution, SDF-GA will not

perform poorly. Considering that the most distinguishing characteristic of SDF-GA with traditional intelligent optimization

algorithms is the use of prior knowledge, we use the Bayes theorem to briefly prove the superiority of SDF-GA and designate T-

GA as an exemplar of traditional intelligent optimization algorithms to contrastively analyse the performance boundaries of SDF-

GA. A lemma for T-GA and a property of SDF-GA are introduced first.

Let 𝑅 be the search space of a manufacturing cloud service composition, R={r1, r2, … rh} be a set of subspaces, 𝑖 = 1ℎ𝑟𝑖 =

𝑅. Let 𝑦𝑏 = 𝑓 be the best solution, B={𝑦𝑛 |∀𝑦𝑛 ∈ 𝑅 ∧∨ 𝑦𝑏 − 𝑦𝑛 ∨≤ 휀} be a set of feasible solutions, and 휀 be an arbitrarily small

number. Each subspace has at most one set of feasible solutions B. The subspace that contains B is called the optimal subspace.

Let A
(t)

 ={𝑦𝑖 |∀𝑦𝑖 ∈ 𝑅} be the population of T-GA/SDF-GA of generation t and let 𝑃(𝐴(𝑡)) be the probability of finding a solution

in B. In other words, it is the probability that individuals of A
(t)

 include elements of B. The set R={r1, r2, … rh} can be further

divided into two subsets. One subset includes subspaces with elements of B; the other set contains subspaces that do not include

include elements of B. Let u be the number of the first set; then, the number of the second set is h-u. We have𝑃(𝐴(𝑡)) =

∑ 𝑃 (𝐴𝑗
(𝑡)

)𝑢
𝑗=1 , and 𝑃 (𝐴𝑗

(𝑡)
) is the probability that individuals from A

(t)
 located in the optimal subspace j contain elements of B.

When the algorithm has not converged at iteration t, we also can have ∑ 𝑃 (𝐴𝑖
(𝑡)

)ℎ−𝑢
𝑖=1 + ∑ 𝑃 (𝐴𝑗

(𝑡)
)𝑢

𝑗=1 = 1. When the algorithm

converges in t iterations, we have ∑ 𝑃 (𝐴𝑗
(𝑡)

)𝑢
𝑗=1 = 1, ∑ 𝑃 (𝐴𝑖

(𝑡)
)ℎ−𝑢

𝑖=1 = 0 (Jiang et al. 2014).

(Lemma 1). Let A
(0)

 and 𝑃(𝐴(0)) be the initial population and its probability for containing the element in B. Let 𝛥𝑝 =

∑ 𝑃(𝐴(𝑡))−𝑃(𝐴(𝑡−1))𝑡
𝑖=1

𝑡
 be the average difference of probability between adjacent iterations. The convergence time of T-GA is

15

positively correlated with 𝑃(𝐴(0)) and negatively correlated with 𝛥𝑝:

𝐸(𝑡) =
1−𝑃(𝐴(0))

𝛥𝑝
 (16)

According to lemma 1, we can conclude that a better initial population can accelerate the convergence velocity of GA and its

derived algorithms. Simultaneously, better strategies for crossover and mutation that lead to a greater 𝛥𝑝 can also improve the

convergence speed without considering the time consumed by the strategy implementation.

Consequently, if SDF-GA has a better initial population or strategies for crossover and mutation, SDF-GA can achieve better

performance. Indeed, SDF-GA fully utilizes the prior knowledge about the distribution of B in the subspaces. We need to learn the

property of SDF-GA before we discuss the superiority of SDF-GA. We assume that the prior knowledge used by SDF-GA is from

the final solutions of T-GA for the same SCOS problem. From the perspective of Bayesian theory, the probability of the initial

population of SDF-GA is a posterior probability of the results of T-GA about the distribution of B in the subspaces. Consequently,

one property of SDF-GA can be defined as follows.

(Property 1). Let 𝐴𝑆𝐷𝐹𝑠−𝐺𝐴
(0)

 be the initial population of SDF-GA. Let 𝑃𝑆𝐷𝐹𝑠−𝐺𝐴 (𝐴𝑗
(0)

) be the probability that individuals in

𝐴𝑆𝐷𝐹𝑠−𝐺𝐴
(0)

 located in the optimal subspace j contain elements of B. Similarly, let 𝐴𝑇−𝐺𝐴
(𝑃)

 be the available solutions of T-GA, and let

𝑃𝑇−𝐺𝐴 (𝐴𝑗
(𝑃)

) be the prior probability that individuals from 𝐴𝑇−𝐺𝐴
(𝑃)

 located in subspace j contain elements in B. Let

𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(𝑃)

⁄) be the occurrence probability that elements of B are located in subspace j. The 𝑃𝑆𝐷𝐹𝑠−𝐺𝐴 (𝐴𝑗
(0)

) is a posterior

probability for the distribution of B in each subspace:

𝑃𝑆𝐷𝐹−𝐺𝐴 (𝐴𝑗
(0)

) = 𝑃𝑇−𝐺𝐴 (𝐴𝑗
(𝑃)

𝐵⁄) =
𝑃𝑇−𝐺𝐴(𝐴𝑗

(𝑃)
)𝑃𝑇−𝐺𝐴(𝐵 𝐴𝑗

(𝑃)
⁄)

∑ 𝑃𝑇−𝐺𝐴(𝐴𝑗
(𝑃)

)𝑃𝑇−𝐺𝐴(𝐵 𝐴𝑗
(𝑃)

⁄)ℎ

 (17)

where 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(𝑃)

⁄) =
𝑘𝑗

∑ 𝑘𝑗
ℎ
𝑗=1

, kj is the number of best solutions in the subspace j found by T-GA in each iteration, and

∑ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(𝑃)

⁄)ℎ
𝑗=1 = 1.

With this property, we can have two lemmas that can be used to confirm the superiority of SDF-GA.

(Lemma 2). Let 𝐴𝑇−𝐺𝐴
(0)

 be the generated feasible individuals of T-GA, and let 𝐴𝑆𝐷𝐹−𝐺𝐴
(0)

 be the initial population of SDF-GA

based on the prior knowledge abstracted from 𝐴𝑇−𝐺𝐴
(0)

. Let 𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(0)) be the probability that individuals of 𝐴𝑆𝐷𝐹−𝐺𝐴
(0)

 include

elements of B. In other words, 𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(0)) is the probability that individuals of 𝐴𝑆𝐷𝐹−𝐺𝐴
(0)

 are initialized in the optimal

subspaces. Let 𝑃𝑇−𝐺𝐴(𝐴(0)) be the probability that individuals of 𝐴𝑇−𝐺𝐴
(0)

 include elements of B. Then, we can have

𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(0)) ≥ 𝑃𝑇−𝐺𝐴(𝐴(0)), which implies that SDF-GA can initialize a better initial population than can T-GA.

Based on the proof of lemma 2 (see the Appendix), we can conclude that when u=h or

𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑖
(0)

⁄) = 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄) =
1

ℎ
, 𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(0))=𝑃𝑇−𝐺𝐴(𝐴(0)). Combining with lemma 1, this conclusion indicates

that when all four subspaces are the optimal subspace due to the unreasonable division of the service space or the prior knowledge

of 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄), SDF-GA can achieve the same performance as T-GA. This indication not only demonstrates the superiority

of SDF-GA because it can perform better than T-GA, in which case the feature sets are an optimal subspace based on the

sufficient prior knowledge, but also provides the lower boundary of the performance of SDF-GA. When all four sets are the

optimal subspace, the poorest performance of SDF-GA is the same as the performance of T-GA.

Similarly, when u=0, SDF-GA can achieve the same performance as T-GA, which implies that when prior knowledge is

insufficient and the division of the service space is unreasonable, the optimal subspaces cannot be identified, and SDF-GA only

performs similarly to T-GA, which randomly searches the whole service space.

16

(Lemma 3). Let 𝐴(0) be the same initial population of T-GA, SDF-GA, 𝐴𝑇−𝐺𝐴
(1)

 be the first generation of T-GA and

𝑃𝑇−𝐺𝐴(𝐴(1)) be the probability that individuals of 𝐴𝑇−𝐺𝐴
(1)

 include elements of B. Let 𝐴𝑆𝐷𝐹−𝐺𝐴
(1)

 be the first generation of SDF-GA,

and let 𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(1)) be the probability that individuals of 𝐴𝑆𝐷𝐹−𝐺𝐴
(1)

 include elements of B. We assume that the operators of

SDF-GA are based on feature sets abstracted from historical data of 𝐴𝑇−𝐺𝐴
(1)

. Then, we can have 𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(1)) ≥ 𝑃𝑇−𝐺𝐴(𝐴(1)).

For the proof, please see the Appendix.

Lemma 3 indicates that with the same initial population and prior knowledge, SDF-GA has a better convergence

performance based on the inference 𝛥𝑝𝑆𝐷𝐹𝑠−𝐺𝐴 = 𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(1)) − 𝑃(𝐴(0)) ≥ 𝛥𝑝𝑇−𝐺𝐴 = 𝑃𝑇−𝐺𝐴(𝐴(1)) − 𝑃(𝐴(0)). However,

it also implies that SDF-GA can find more-optimal solutions than can T-GA.

Based on lemmas 1-3, we can have two corollaries.

Corollary 1. For a problem of SCOS in CMfg, if the division of the service space is reasonable, when SDF-GA and T-GA

can both find the best solution, SDF-GA might have a better convergence performance than T-GA.

Corollary 2. For a problem of SCOS in CMfg, if the division of the service space is reasonable, and SDF-GA and T-GA

cannot both find the best solution, then SDF-GA might achieve not only a better performance in searching for the best solution but

also better convergence performance than T-GA.

6 Case study

6.1 Objectives and dataset

The performance of SDF-GA is evaluated using three metrics: convergence speed, capability of finding the best solution with

limited iterations and probability of obtaining the global optimum solution. Different objectives are considered in analysing SDF-

GA:

1) Analysing the effects of the SDFs on the performance of the proposed algorithm;

2) Assessing the effectiveness of the optimization strategies for the proposed algorithm; and

3) Comparatively evaluating the performance of SDF-GA against other SDF-oriented algorithms.

Consequently, three case studies were implemented using Visual Studio 2010 with the C# language on a PC with an Intel(R)

i5-6200U @ 2.30 GHz CPU and 8 GB of memory. One dataset is based on a real-world dataset from a private CMfg. This CMfg

belongs to one of the largest manufacturers in China, who is trying to take advantage of CMfg to realize industry 4.0. Based on

this CMfg, a specific demand in the customized production of household electrical appliances can be easily satisfied by finding an

optimal solution based on the service process with 72 subtasks (see Fig. 4; black cuboids represent a set of the same type of

subtasks). For each subtask, there are 58 qualified candidate services (including services provided by SME) on average, and each

service has five QoS parameters: Cost (C), Execution time (Et), Response time (Rt), Reliability (R), and Availability (A).

According to the customer requirement, we can assume that minimizing the Execution time Min 𝑓(𝐸𝑡𝑛,1, … , 𝐸𝑡𝑛,𝑗) is the target

for the manufacturing cloud service composition with QoS constraints 𝜑(𝐶𝑘,1, … , 𝐶𝑘,𝑗)≤6000, 𝜑(𝑅𝑡𝑘,1, … , 𝑅𝑡𝑘,𝑗)≤50h(hours),

𝜑(𝐸𝑡𝑘,1, … , 𝐸𝑡𝑘,𝑗)≤17d(days), 𝜑(𝑅𝑘,1, … , 𝑅𝑘,𝑗)≥0.02 and 𝜑(𝐴𝑘,1, … , 𝐴𝑘,𝑗)≥0.02.

17

Fig. 4 Service process with subtasks for a service request for household electrical appliances

6.2 Case 1: Effect of SDFs on the proposed algorithm

This case study is designed to analyse the influence of different levels of richness characterizing the feature sets on the

effectiveness of SDF-GA for solving SCOS problems and the working mechanism of different SDFs. Accordingly, two

experiments are implemented. The first experiment uses different thresholds T to generate feature sets with different levels of

richness and runs SDF-GA and T-GA to analyse their performance. The other experiment applies different algorithms derived by

SDF-GA for analysing the working mechanism of the SDFs.

For the first experiment, T-GA is initially performed 200 times with 100 iterations to generate historical solutions. Different

percentage values of historical solutions are used as a threshold T to divide the generated solution into positive and negative

solutions for achieving feature sets with different levels of richness. For a certain percentage p, SDF-GA is performed 50 times

with 100 iterations to comprehensively assess its convergence speed, capability for finding the best fitness with limited iterations

and probability of obtaining the global optimal solution. For all individuals of SDF-GA and T-GA, their fitness values are

normalized by Eq. 4, which assigns the best fitness value (the minimum cost) to 0 and the worst fitness value to 1. Moreover,

solutions belonging to the set F={fi| fbest-fi≤ε=0.08} (fbest is the best solution found by SDF-GA) are considered the global optimal

solution. When the best solution found by the algorithms belongs to the set F, the number of times for finding the global optimal

solution is increased. A comparison of the average results is shown in Fig. 5, in which the performance of T-GA is used as a

baseline.

(a) Convergence speed comparison (b) Capability comparison (c) Probability comparison

Fig. 5 Effectiveness of SDF-GA with different levels of richness (p)

 Fig. 5(a) shows the convergence speed results. The convergence speed of T-GA is the average value of the convergence time

over 200 runs. With increasing percentage of positive solutions, the average convergence speed of SDF-GA initially increases but

then decreases. When the levels of positive solutions are between 30 and 60 percent, the convergence speed increases

dramatically. The reason for this phenomenon might be that in these cases, the feature sets can contain reusable solutions and

more-superior candidate services. In other words, the probability that the feature sets will include the global optimal solution

Order

collect

service

Start End

Candidate

services

Structure

design service

Exterior

design

service

Design

simulation

service

Accessories

production

service

Accessories

procurement

service

Packaging

design

service

Product

assembling

service

Package stuff

production

service

Package stuff

procurement

service

Product

packaging

service

Logistics and

installation

service

…

…

…

…

…

…

…

…

Production plan

and information

management

service

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

PriS

CorS

SimS

GenS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Percentage of solutions (T)

A
ve

ra
g
e

 c
o
n

v
e
rg

e
n
c
e

 t
im

e
(s

)

Experimental result of convergence speed

SDF-GA

T-GA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Percentage of solutions (T)

T
h
e

 b
e
s
t

a
v
e

ra
g

e
 f

it
n

e
ss

Experimental result of best fitness with limited iterations

SDF-GA

T-GA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Percentage of solutions (T)

P
ro

b
a

b
il
it

y
o

f
g
e

tt
in

g
 t

h
e

 g
lo

b
a

l
o

p
ti
m

a
l
s
o

lu
ti

o
n
s
(%

)

Experimental result of Probability of getting the global optimal solutions

SDF-GA

T-GA

18

increases. When the levels of the positive solutions are greater than 70 percent, the convergence speed decreases because the scale

of the feature sets is larger, and more time is needed to search the subspaces.

Fig. 5(b) shows the capabilities for finding the best solutions with a limited number of iterations. The best average fitness

increases with increasing amount of positive solutions. When the percentage of positive solutions is 60%, the best average fitness

reaches a maximum and barely changes because when a feature set contains the necessary qualified candidate service for the

global optimal solution, and SFDs-GA can always find this solution regardless of the scale of the feature sets (Fig. 5(a) indicates

that a large scale might require more time). This characteristic is a benefit obtained from the fine-grained definitions of the SFDs.

Fig. 5(c) shows a similar circumstance. When the percentage of positive solutions increases, the probability of obtaining the best

optimal solution is maximized at 82% and changes only slightly.

Overall, with the appropriate feature sets, the performance of SDF-GA is found to be outstanding relative to T-GA. The

experimental results show that the SDFs are not always valid until the richness of the SDFs reaches the baseline. These results are

consistent with the discussion based on lemma 2.

Next, to independently assess the working mechanism of SDFs for the proposed algorithm, three algorithms are derived

based on SDF-GA: improved GAs based on the prior (P-GA), correlation (C-GA), and similarity (S-GA). P-GA, C-GA and S-GA

solely use the corresponding feature set. Based on the first experiment, 60% of the generated solutions are assigned as the

threshold T and used to generate the feature sets. Each algorithm is implemented 50 times with 100 iterations for multiple analyses

with respect to the convergence speed, the capability of finding the best solution with limited number of iterations and the

probability of obtaining the global optimum solution. The experimental results are shown in Fig. 6.

(a) Convergence speed comparison (b) Capability comparison (c) Probability comparison

Fig. 6 Performance comparison of algorithms

Fig. 6(a) shows that the average number of iterations until convergence of SDF-GA is the lowest. However, the convergence

time of SDF-GA is the highest (SDF-GA’s average number of iterations until convergence is 37, and that of T-GA is 62) because

each iteration of SDF-GA needs more time to generate new generations. The convergence performance of C-GA and S-GA is

better than that of P-GA, which might indicate that the correlation and similarity features have a better effect on the convergence

performance of SDF-GA. Fig. 6(b) shows the box graph with the average best fitness of each iteration from 0 to 100 – 50 times.

The performance of SDF-GA in terms of finding the best solution is distinctly better, followed by S-GA and C-GA, which might

further indicate that the correlation and similarity features strongly determine the performance of SDF-GA. The performance of P-

GA is close to the performance of T-GA, which might be because the services in the prior set that have QoS correlations with

other services have been moved to the correlation set; the remaining services in PriS can only be used to form local optimal

solutions. P-GA has a greater chance to randomly search the space around the local optimal solution. The compared results

illustrate that the three features can work together to make the SDF-GA perform well and that a single feature has only limited

benefit. In addition, the outliers in Fig. 6(b) are the average best fitnesses of the initial iterations, which are much greater than the

average values of the sequential iteration process. This result also shows the convergence states of the algorithms from another

perspective; SDF-GA and S-GA can rapidly reach the converged state. S-GA has a better ability to find the global optimal solution

than does C-GA or P-GA. Figure 7 (c) shows the probability of the algorithms to obtain the global optimal solution. This result

further confirms the superiority of SDF-GA and benefits of the correlation and similarity with respect to the performance of SDF-

GA.

To summarize, the results have shown that similarity and correlation play larger roles in the performance of SDF-GA.

Simultaneously, a single feature has limited effectiveness. Considering the dependencies among feature sets, these three features

SDF-GA P-GA C-GA S-GA T-GA
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Algorithms

A
ve

ra
g
e

 c
o
n

v
e
rg

e
n
c
e

 t
im

e
(s

)

Experimental result of convergence speed

1.32s
1.29s

1.25s 1.23s

0.91s

0.37%

0.51%
0.46% 0.44%

0.62%

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SDF-GA P-GA C-GA S-GA T-GA
Algorithms

Performances of different algorithms with 100 terations

T
h
e

 a
ve

ra
g
e

 b
e

s
t

fi
tn

e
ss

 w
it

h
 5

0
 t

im
e

s

SDF-GA 32.32%

P-GA 13.69%

C-GA 22.05%

S-GA 23.57%

T-GA 8.37%

The probability to get the global optimum solution

19

should be used in combination to help solve SCOS problems. These results also provide evidence that proves Corollaries 1 and 2.

6.3 Case 2: Effectiveness of optimization strategies of proposed algorithm

This case study is designed to verify the effectiveness of optimization strategies for the proposed algorithm. Similarly, 60% is

used as the threshold T to generate the feature sets. Algorithms 2, 3, 4 and 5 are performed with T-GA separately to analyse each

strategy. Algorithms 3 and 4 are performed together with the normal initial population and normal fitness function of T-GA, and

algorithm 5 is performed with a normal initial population and operators from T-GA. Comparisons of the experimental results are

shown in Fig. 7. Fig. 7(a) shows the initial population generated by algorithm 2 and T-GA. Most individuals generated by

algorithm 2 are initialized around the best solutions found by T-GA, which confirms the effectiveness of algorithm 2 and lemma

2. Simultaneously, individuals generated from CorS and SimS are better than individuals generated from PriS, which further

indicates the main roles of correlation and similarity. Fig. 7(b) shows the average fitness of two iterations of T-GA and T-GA with

algorithms 3 and 4. This result confirms lemma 3, that is, with the SDF-oriented operators, SDF-GA can quickly find the best

solution. When SDF-GA runs for approximately 20 iterations, new generations of SDF-GA can reuse local optimal solutions

generated by T-GA to search further for the global optimal solution. This point also suggests that SDF-GA’s performance depends

heavily upon the quality of the feature sets; thus, if the quality of the feature sets is not very high, then the sets can converge

rapidly to a poor solution around the local optimal solution. This circumstance is consistent with the discussion of lemma 2. Fig.

7(c) contrastively shows the individual fitness of the final iterations of T-GA and SDF-GA, which have different fitness functions.

As seen from the figure, the population of SDF-GA has a greater diversity than does T-GA, which implies the beneficial effect of

fitness-sharing niching technology.

In summary, this case study verifies the effectiveness of optimization strategies. Combining with the results of the two case

studies above, we can conclude that, compared with T-GA, SDF-GA achieves a higher performance in solving SCOS problems.

(a) Effectiveness of initial population (b) Effectiveness of operators

(c) Effectiveness of fitness function

Fig. 7 Effectiveness of optimization strategies of SDF-GA

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial population of SDF-GA and T-GA

Individuals

F
it
n

e
s
s)

T-GA

SDF-GA

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average fitness of individuals between two iterations

Iterations

A
ve

ra
g
e

 v
a
lu

e
 o

f
fi
tn

e
ss

T-GA

SDF-GA

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Individuals in the final iteration of T-GA

Individuals

F
it
n

e
s
s

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Individuals in the final iteration of SDF-GA

Individuals

F
it
n

e
s
s

20

6.4 Case 3: Search ability of proposed algorithm compared with other SDF-oriented algorithms

This case study is designed to assess the performance of SDF-GA compared with DE-caABC and S-ABC, which are two

SDF-oriented algorithms and have been shown to be superior to traditional algorithms such as GA, ABC, and AC. The settings of

DE-caABC and S-ABC are the original settings in the corresponding studies. These two algorithms were first performed 50 times

with 200 iterations on the dataset. The comparison results with SDF-GA are shown in Fig. 8. Moreover, to fully assess the

performance of the algorithms, five datasets were synthesized based on a pre-existing dataset. The synthesized datasets are shown

in Table 6. The first dataset is the pre-existing dataset. For each synthesized set, the GA also is used to generate a solution to

obtain feature sets with the 60% threshold. Then, these three algorithms are performed 50 times with 200 iterations each. The

experimental results are shown in Fig. 9.

Fig. 8(a) shows the convergence speed of the algorithms; the convergence speed of SDF-GA is better than that of DE-caABC

and worse than that of S-ABC. Fig. 8(b) shows the best average fitness; the performance of SDF-GA is the highest. S-ABC can

rapidly converge, possibly because abundant prior schemas are used in S-ABC and because there is little focus on superior

similarity and QoS correlation. DE-caABC suffers from the same drawbacks, but the DE stage can help DE-caABC find better

solutions based on the generated local optimal solutions. Fig. 8(c) shows the comparative probabilities of obtaining the global

optimal solution. As seen from the figure, the performance of SDF-GA is the best, and DE-caABC is better than S-ABC.

Fig. 9 shows that with increasing number of subtasks and candidate services, the performance of DE-caABC and S-ABC

with respect to the three metrics decreases dramatically. In contrast, the performance of SDF-GA presents a slow decline. SDF-GA

performs well on all synthesized datasets, which indicates that the proposed algorithm has the better searching capability both in

local and global search.

In summary, the above experimental results prove the superiority of SDF-GA. It has better local and global searching

abilities, whereas DE-caABC and S-ABC are similar to the P-GA, which focusses on local searching and has a better local search

ability. Consequently, the proposed algorithm can more effectively solve SCOS problems.

(a) Convergence speed comparison (b) Capability comparison (c) Probability comparison

Fig. 8 Algorithm performance comparison

(a) Convergence speed comparison (b) Capability comparison (c) Probability comparison

Fig. 9 Algorithm performance comparison with different datasets

Table 5 Details of the synthetic datasets

No. 1 2 3 4 5 6

Subtasks 72 100 120 150 180 200

Candidate service 58 100 150 200 250 300

Best Average Worst
0

0.5

1

1.5

2

2.5

3

3.5

C
o
n

v
e
rg

e
n
c
e

 t
im

e
(s

)

Experimental result of convergence speed

SDF-GA

DE-caABC

S-ABC

SDF-GA

DE-caABC

S-ABC

SDF-GA

DE-caABC

S-ABC

0 50 100 150 200
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Iteration times

T
h
e

 b
e
s
t

a
v
e

ra
g

e
 f

it
n

e
ss

Experimental result of the best fit ness with limited iterations

SDF-GA

DE-caABC

S-ABC

SDF-GA 46.59%

DE-caABC 28.41%

S-ABC 25.00%

The probability to get the global optimum solution

1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

Data sets

T
h
e

 c
o
n

v
e
rg

e
n
c
e

 t
im

e

Experimental result of convergence speed

SDF-GA

DE-caABC

S-ABC

1 2 3 4 5 6
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Data sets

T
h
e

 b
e
s
t

a
v
e

ra
g

e
 f

it
n

e
ss

Experimental result of the best fitness with limited iterations

SDF-GA

DE-caABC

S-ABC

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data sets

T
h
e

 p
ro

b
a

b
il
it

y
w

it
h
 5

0
 t

im
e
s

Experimental result of probability to get the global optimal

SDF-GA

DE-caABC

S-ABC

21

6.5 Discussion

With the above experiments, SDF-GA is shown to achieve good performance, which is in agreement with the theoretical

analysis. Compared with T-GA and other SDF-oriented algorithms, given a certain amount of prior knowledge, it achieves

superior performance in terms of convergence speed (convergence iterations), a capability for finding the best solution and a

probability of finding the global optimal solution. Similarity and correlation play important roles for SDF-GA in finding the global

optimal solution and might be the key reason that SDF-GA can perform better than other SDF-oriented algorithms. However, with

the dependencies among feature sets, these features should be used together to obtain the best performance. The scale of the

feature sets can influence the convergence speeds but has only a slight effect on the capability of finding the best solution and

probability of obtaining globally optimal solutions. Figs. 5 (b) and (c) show that when the percentage is greater than 30%, the

probability of feature sets containing services of the global optimal solution increases and SDF-GA gradually begins to perform

well; when the feature sets cover sufficient services for the global optimal solution, SDF-GA achieves its top performance. The

better local and global searching abilities of SDF-GA rely heavily on the quality of the feature sets, which means that the threshold

T of the utility function should be set with an appropriate value for acquiring sufficient prior knowledge. Moreover, thresholds for

generating feature sets should be adjusted with the threshold T.

The superiority of SDF-GA makes it suitable for the SCOS in CMfg, particularly for a service composition with many

subtasks and candidate services. For such SCOS problems, SDF-GA can obtain the optimal solution efficiently and effectively

with a certain amount of prior knowledge. For SCOS problems without historical data, T-GA and other intelligent optimization

algorithms can first be used to generate the prior knowledge for setting up the SDF-GA to obtain a more optimal solution. With

the help of SDF-GA and the easily attained SDFs from historical practices, manufacturers who are willing to utilize CMfg for

implementing mass customization or the new industrial revolution based on flexible service composition can arrive at their goals

safely and efficiently, with high-quality compositional services and products.

Conclusion and future work

SCOS problems in CMfg are becoming more complicated, with ever-increasing candidate services and the innovation of an

intelligent manufacturing mode. In this paper, a service domain feature-oriented genetic algorithm is proposed in response to the

deficiency of existing methods in addressing this problem. More specifically, some fine-grained definitions of Service Domain

Features (SDFs) are presented, and an algorithm for dividing the services into four subspaces with defined features is proposed.

Then, with the divided service space, optimization strategies of the initial population, operators and fitness function based on

SDFs are presented. The theoretical analysis of the property of proposed algorithm and its superiority is further provided based on

the Bayes theorem. Its effectiveness and efficiency are verified through three case studies of SCOS problems in CMfg. The

proposed algorithm can be used not only for manufacturers who are attempting to employ service composition in CMfg to address

the pressure of lower costs and to improve the core competitive ability in the current “globalization of manufacturing”

environment but also for providing some theoretical guidance and insights to CMfg designers.

The main contributions of this paper are summarized as follows:

(1) With the purpose of using priori knowledge to solve SCOS problems, we defined some fine-grained definitions of SDFs

that can be used to reasonably divide the service space of SCOS problems.

(2) To quickly and thoroughly search the divided service space in obtaining optimal solutions, we proposed a service domain

feature-oriented genetic algorithm with SDF-based optimization strategies. The performance comparisons indicated that

the proposed algorithm is better than other SDF-based algorithms for solving SCOS problems, especially for solving

SCOS problems with a large-scale search space.

(3) We studied the proposed algorithm. Using the theory of the Bayes theorem, its superiority in terms of the performance

with respect to convergence speed and optimization result is proved. The experimental results showed that the results

were in accordance with the theoretical analysis.

In the future, our work will further refine the definitions of SDFs and strategies by studying the division of subspaces for

specific SCOS problems. We will apply the proposed algorithm to solve SCOS problems in several practical manufacturing

22

domains (e.g., automobile manufacturing, electric manufacturing, and zipper manufacturing) to further explore its practical value.

Acknowledgment

This work has been supported in part by the research projects of the National Natural Science Foundation of China (NSFC) (No.

71571056) and the Scientific Research Funds of Huaqiao University (16BS304).

Appendix

1. Proof of Lemma 2. A set of values of 𝑃𝑇−𝐺𝐴 (𝐵 𝐴ℎ
(0)

⁄) can be derived based on the formula in Property 1 for calculating

𝑃𝑇−𝐺𝐴 (𝐵 𝐴ℎ
(0)

⁄) and sorted in ascending order 0 ≤ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴1
(0)

⁄) ≤ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴2
(0)

⁄) ≤∙∙∙≤ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴ℎ
(0)

⁄), and then, we

randomly split the set of values as 0 ≤ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴1
(0)

⁄) ≤ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴2
(0)

⁄) ≤∙∙∙≤ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴ℎ−𝑢
(0)

⁄) ≤ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴1
(0)

⁄) ≤

𝑃𝑇−𝐺𝐴 (𝐵 𝐴2
(0)

⁄) ≤∙∙∙≤ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑢
(0)

⁄). We ensure that the optimal subspace is one of subspaces among u subspaces with larger

values of 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑢
(0)

⁄) and use all solutions from u subspaces to initialize the population of SDF-GA. Based on Property 1,

we have

𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(0)) = ∑ 𝑃𝑆𝐷𝐹−𝐺𝐴 (𝐴𝑗
(0)

)

𝑢

𝑗=1

=
∑ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄) × 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

∑ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑖
(0)

⁄) × 𝑃𝑇−𝐺𝐴 (𝐴𝑖
(0)

)ℎ−𝑢
𝑖=1 + ∑ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄) × 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

∑
𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
× 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

∑
𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑖

(0)
⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
× 𝑃𝑇−𝐺𝐴 (𝐴𝑖

(0)
)ℎ−𝑢

𝑖=1 + ∑
𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
× 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

 Because of this, the value of 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑖
(0)

⁄) is smaller than the value of 𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄), and thus, we can have

𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(0)) ≥

∑
𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
× 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

∑ 𝑃𝑇−𝐺𝐴 (𝐴𝑖
(0)

)ℎ−𝑢
𝑖=1 + ∑

𝑃𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)

𝑚𝑖𝑛𝑃𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
× 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

∑
𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
× 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

1 − ∑ 𝑃𝑇−𝐺𝐴 (𝐴𝑗
(0)

)𝑢
𝑗=1 + ∑

𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
× 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

23

∑ 𝑃𝑇−𝐺𝐴 (𝐴𝑗
(0)

)𝑢
𝑗=1 + ∑ (

𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
− 1) × 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

1 + ∑ (
𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
− 1) × 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

 Because of ∑ 𝑃𝑇−𝐺𝐴 (𝐴𝑖
(𝑡)

)ℎ−𝑢
𝑖=1 + ∑ 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(𝑡)
)𝑢

𝑗=1 = 1, we have

𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(0)) =

1 + ∑ (
𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
− 1) × 𝑃𝐺𝐴 (𝐴𝑗

(0)
) − ∑ 𝑃𝑇−𝐺𝐴 (𝐴𝑖

(0)
)ℎ−𝑢

𝑖=1
𝑢
𝑗=1

1 + ∑ (
𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
− 1) × 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

1 −
∑ 𝑃𝑇−𝐺𝐴 (𝐴𝑖

(0)
)ℎ−𝑢

𝑖=1

1 + ∑ (
𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(0)

⁄)
− 1) × 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1

 Because of ∑ (
𝑃𝑇−𝐺𝐴(𝐵 𝐴𝑗

(0)
⁄)

𝑚𝑖𝑛𝑃𝑇−𝐺𝐴(𝐵 𝐴𝑗
(0)

⁄)
− 1) × 𝑃𝑇−𝐺𝐴 (𝐴𝑗

(0)
)𝑢

𝑗=1 ≥ 0, we have

𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(0)) ≥ 1 − ∑ 𝑃−𝐴 (𝐴𝑖
(0)

)

ℎ−𝑢

𝑖=1

= ∑ 𝑃𝑇−𝐺𝐴 (𝐴𝑗
(0)

)

𝑢

𝑗=1

= 𝑃𝑇−𝐺𝐴(𝐴(0))

2. Proof of Lemma 3. Based on Property 1, we have

𝑃𝑇−𝐺𝐴(𝐴(1)) =
∑ 𝑃 (𝐵 𝐴𝑗

(0)
⁄)𝑢

𝑗=1 𝑃 (𝐴𝑗
(0)

)

∑ 𝑃 (𝐵 𝐴𝑖
(0)

⁄) 𝑃 (𝐴𝑖
(0)

) + ∑ 𝑃 (𝐵 𝐴𝑗
(0)

⁄) 𝑃 (𝐴𝑗
(0)

)𝑢
𝑗=1

ℎ−𝑢
𝑖=1

1

∑ 𝑃 (𝐵 𝐴𝑖
(0)

⁄)ℎ−𝑢
𝑖=1 𝑃 (𝐴𝑖

(0)
)

∑ 𝑃 (𝐵 𝐴𝑗
(0)

⁄) 𝑃 (𝐴𝑗
(0)

)𝑢
𝑗=1

+ 1

 Because the operators of SDF-GA use feature sets generated from 𝐴𝐺𝐴
(1)

, we have

𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(1)) =
∑ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗

(1)
⁄)𝑢

𝑗=1 𝑃 (𝐴𝑗
(0)

)

∑ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑖
(1)

⁄) 𝑃 (𝐴𝑖
(1)

) + ∑ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(1)

⁄) 𝑃𝐺𝐴 (𝐴𝑗
(1)

)𝑢
𝑗=1

ℎ−𝑢
𝑖=1

1

∑ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑖
(1)

⁄) 𝑃 (𝐴𝑖
(1)

)ℎ−𝑢
𝑖=1

∑ 𝑃𝑇−𝐺𝐴 (𝐵 𝐴𝑗
(1)

⁄)𝑢
𝑗=1 𝑃 (𝐴𝑗

(1)
)

+ 1

Based on Lemma 2, we can obtain ∑ 𝑃𝐺𝐴 (𝐵 𝐴𝑗
(1)

⁄)𝑢
𝑗=1 𝑃 (𝐴𝑗

(1)
) ≥ ∑ 𝑃𝐺𝐴 (𝐵 𝐴𝑗

(0)
⁄)𝑢

𝑗=1 𝑃 (𝐴𝑗
(0)

), and thus, we have

𝑃𝑆𝐷𝐹−𝐺𝐴(𝐴(1)) ≥ 𝑃𝐺𝐴(𝐴(1)).

References

Bravo, M. (2014). Similarity measures for web service composition models. International Journal on Web Service Computing, 495-505.

Chen, F., Dou, R., Li, M., & Wu, H. (2016). A flexible QoS-aware Web service composition method by multi-objective optimization in cloud

24

manufacturing. Computers & Industrial Engineering, 99, 423-431.

Chen, R., Guo, J., & Bao, F. (2016). Trust management for SOA-based IoT and its application to service composition. IEEE Transactions on

Services Computing, 9(3), 482-495.

Fatahi Valilai, O., & Houshmand, M. (2014). A platform for optimisation in distributed manufacturing enterprises based on cloud manufacturing

paradigm. International Journal of Computer Integrated Manufacturing, 27(11), 1031-1054.

Feng, Y., & Huang, B. (2018). Cloud manufacturing service qos prediction based on neighbourhood enhanced matrix factorization. Journal of

Intelligent Manufacturing (1), 1-12.

Hua, G., Zhang, L., Liu, Y., Tao, F., Shu, M., & Mu, S. (2014). A discovery method of service-correlation for service composition in virtual

enterprise. European Journal of Industrial Engineering, 8(5), 579-618.

Huang, B., Li, C., & Tao, F. (2014). A chaos control optimal algorithm for QoS-based service composition selection in cloud manufacturing

system. Enterprise Information Systems, 8(4), 445-463.

Huang, J., Li, S., Duan, Q., Yu, R., & Yu, S. (2016, December). QoS Correlation-Aware Service Composition for Unified Network-Cloud

Service Provisioning. In Global Communications Conference (GLOBECOM), 2016 IEEE (pp. 1-6). IEEE.

Jiang, Y. Z., Hao, Z. F., Zhang, Y. S., Huang, H., Wang, Y. L., & He, H. J. (2014). Bayesian forecasting evolutionary algorithm. Chinese Journal

of Computers.

Jin, H., Yao, X., & Chen, Y. (2017). Correlation-aware QoS modeling and manufacturing cloud service composition. Journal of Intelligent

Manufacturing, 28(8), 1947-1960.

Kai, C., Guohu, C., & Hua, J. (2014). Guided self-adaptive evolutionary genetic algorithm. Journal of Electronics & Information Technology,

36(8), 1884-1890.

Karim, R., Ding, C., & Miri, A. (2015, June). End-to-end QoS prediction of vertical service composition in the cloud. In Cloud Computing

(CLOUD), 2015 IEEE 8th International Conference on (pp. 229-236). IEEE.

Kubler, S., Holmström, J., Främling, K., & Turkama, P. (2016). Technological Theory of Cloud Manufacturing. Service Orientation in Holonic

and Multi-Agent Manufacturing. Springer International Publishing.

Lemos, A. L., Daniel, F., & Benatallah, B. (2016). Web service composition: a survey of techniques and tools. ACM Computing Surveys (CSUR),

48(3), 33.

Li BH, Zhang L,Wang SL, Tao F, Cao JW, JiangXD, SongX, Chai XD (2010) Cloud manufacturing: a new service-oriented networked

manufacturing model. Comput Integr Manuf Syst 16(1):1–16

Liu, J., Hao, S., Zhang, X., Wang, C., Sun, J., Yu, H., & Li, Z. (2016, June). Research on Web Service Dynamic Composition Based on

Execution Dependency Relationship. In Services (SERVICES), 2016 IEEE World Congress on (pp. 113-117). IEEE.

Liu, Z., & Xu, X. (2014, June). S-ABC-A Service-oriented artificial bee colony algorithm for global optimal services selection in concurrent

requests environment. In Web Services (ICWS), 2014 IEEE International Conference on (pp. 503-509). IEEE.

Lu, Y., & Xu, X. (2017). A semantic web-based framework for service composition in a cloud manufacturing environment. Journal of

Manufacturing Systems, 42, 69-81.

Morgan, J., & O’Donnell, G. E. (2017). Enabling a ubiquitous and cloud manufacturing foundation with field-level service-oriented

architecture. International Journal of Computer Integrated Manufacturing, 30(4-5), 442-458.

Pisching, M. A., Junqueira, F., Filho, D. J. S., & Miyagi, P. E. (2015). Service Composition in the Cloud-Based Manufacturing Focused on the

Industry 4.0. Technological Innovation for Cloud-Based Engineering Systems. Springer International Publishing.

Seghir, F., & Khababa, A. (2016). A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service

composition. Journal of Intelligent Manufacturing, 1-20.

Tao, F., Cheng, Y., Da Xu, L., Zhang, L., & Li, B. H. (2014). CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing

service system. IEEE Transactions on Industrial Informatics, 10(2), 1435-1442.

Tao, F., Cheng, Y., Zhang, L., & Nee, A. Y. C. (2017). Advanced manufacturing systems: socialization characteristics and trends. Journal of

Intelligent Manufacturing, 28(5), 1079-1094.

Tao, F., LaiLi, Y., Xu, L., & Zhang, L. (2013). FC-PACO-RM: a parallel method for service composition optimal-selection in cloud

manufacturing system. IEEE Transactions on Industrial Informatics, 9(4), 2023-2033.

Tao, F., Zhang, L., Liu, Y., Cheng, Y., Wang, L., & Xu, X. (2015). Manufacturing service management in cloud manufacturing: overview and

future research directions. Journal of Manufacturing Science and Engineering, 137(4), 040912.

25

Tao, F., Zhao, D., Yefa, H., & Zhou, Z. (2010). Correlation-aware resource service composition and optimal-selection in manufacturing

grid. European Journal of Operational Research, 201(1), 129-143.

Tao, F., Zuo, Y., Da Xu, L., & Zhang, L. (2014). IoT-based intelligent perception and access of manufacturing resource toward cloud

manufacturing. IEEE Transactions on Industrial Informatics, 10(2), 1547-1557.

Van Nguyen, S., Vo, H. D., & Hung, P. N. (2015, December). A Correlation-aware Negotiation Approach for Service Composition.

In Proceedings of the Sixth International Symposium on Information and Communication Technology (pp. 210-216). ACM.

Wang, J., Zhang, L., Duan, L., & Gao, R. X. (2017). A new paradigm of cloud -based predictive maintenance for intelligent

manufacturing. Journal of Intelligent Manufacturing, 28(5), 1125-1137.

Wu, Q., Zhu, Q., & Zhou, M. (2014). A correlation-driven optimal service selection approach for virtual enterprise establishment. Journal of

Intelligent Manufacturing, 25(6), 1441-1453.

Xiang, F., Jiang, G., Xu, L., & Wang, N. (2016). The case-library method for service composition and optimal selection of big manufacturing

data in cloud manufacturing system. The International Journal of Advanced Manufacturing Technology, 84(1-4), 59-70.

Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and computer-integrated manufacturing, 28(1), 75-86.

Xu, X., Liu, Z., Wang, Z., Sheng, Q. Z., Yu, J., & Wang, X. (2017). S-ABC: A paradigm of service domain-oriented artificial bee colony

algorithms for service selection and composition. Future Generation Computer Systems, 68, 304-319.

Xue, X., Liu, Z. Z., & Wang, S. F. (2016). Manufacturing service composition for the mass customised production. International Journal of

Computer Integrated Manufacturing, 29(2), 119-135.

Ye, Z., Mistry, S., Bouguettaya, A., & Dong, H. (2016). Long-term qos-aware cloud service composition using multivariate time series

analysis. IEEE Transactions on Services Computing, 9(3), 382-393.

Zhang, M. W., Wei, W. J., Zhang, B., Zhang, X. Z., & Zhu, Z. L. (2008). Research on service selection approach based on composite service

execution information. Chinese Journal of Computers, 31(8), 1398-1411.

Zhang, S., Xu, Y., Zhang, W., & Yu, D. (2017). A new fuzzy qos-aware manufacture service composition method using extended flower

pollination algorithm. Journal of Intelligent Manufacturing (4), 1-15.

Zhang, Y., Zhang, G., Liu, Y., & Hu, D. (2017). Research on services encapsulation and virtualization access model of machine for cloud

manufacturing. Journal of Intelligent Manufacturing, 28(5), 1109-1123.

Zheng, H., Feng, Y., & Tan, J. (2016). A fuzzy QoS-aware resource service selection considering design preference in cloud manufacturing

system. International Journal of Advanced Manufacturing Technology, 84 (1-4), 371-379.

Zhou, J., & Yao, X. (2017). DE-caABC: differential evolution enhanced context-aware artificial bee colony algorithm for service composition

and optimal selection in cloud manufacturing. The International Journal of Advanced Manufacturing Technology, 90(1-4), 1085-1103.

